1. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516–1517.
8. Guan Y, Stephens M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann Appl Stat 2011;5:1780–1815.
12. Wen C, Pan W, Huang M, Wang X. Sure independence screening adjusted for confounding covariates with ultrahigh dimensional data. Stat Sin 2018;28:293–317.
14. Liu J, Huang J, Ma S, Wang K. Incorporating group correlations in genome-wide association studies using smoothed group Lasso. Biostatistics 2013;14:205–219.
18. Lee KH. Bayesian variable selection in parametric and semiparametric high dimensional survival analysis.
Ph.D. Dissertation Columbia: University of Missouri, 2011.
19. Lin X, Cai T, Wu MC, Zhou Q, Liu G, Christiani DC,
et al. Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies. Genet Epidemiol 2011;35:620–631.
21. Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. J Am Stat Assoc 1987;82:528–540.
22. Bhattacharya A, Pati D, Pillai NS, Dunson DB. Dirichlet-Laplace priors for optimal shrinkage. J Am Stat Assoc 2015;110:1479–1490.
23. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. New York: John Wiley & Sons, 2011.
24. Lawless JF. Statistical Models and Methods for Lifetime Data. New York: John Wiley & Sons, 2011.
25. Meeker WQ, Escobar LA, Pascual FG. Statistical Methods for Reliability Data. 2nd ed. New York: John Wiley & Sons, 2022.
26. Nelson WB. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. New York: John Wiley & Sons, 2009.
27. Bedrick EJ, Christensen R, Johnson WO. Bayesian accelerated failure time analysis with application to veterinary epidemiology. Stat Med 2000;19:221–237.
28. Christensen R, Johnson W. Modelling accelerated failure time with a Dirichlet process. Biometrika 1988;75:693–704.
29. Kuo L, Mallick B. Bayesian semiparametric inference for the accelerated failure-time model. Can J Stat 1997;25:457–472.
30. Gupta M, Ibrahim JG. An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data. Stat Sin 2009;19:1641–1663.
31. Zellner A. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (Goel PK, Zellner A, eds.). Amsterdam: Elsevier Science Publishers, 1986. pp. 233–243.
32. Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 2004;5:155–176.
33. Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 2003;31:2013–2035.
34. Morris JS, Brown PJ, Herrick RC, Baggerly KA, Coombes KR. Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models. Biometrics 2008;64:479–489.
36. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D,
et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–575.
39. Chen T, Shen XF, Chegini F, Gai WP, Abbott CA. Molecular characterisation of a novel dipeptidyl peptidase like protein: its pathological link to Alzheimers disease. Clin Chem Lab Med 2008;46:A13.
41. De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson RS, et al. A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiol Aging 2012;33:1017.
42. Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiol Aging 2012;33:437–456.
43. Oguri M, Kato K, Yokoi K, Yoshida T, Watanabe S, Metoki N,
et al. Assessment of a polymorphism of
SDK1 with hypertension in Japanese individuals. Am J Hypertens 2010;23:70–77.
44. Skoog I, Gustafson D. Update on hypertension and Alzheimer's disease. Neurol Res 2006;28:605–611.
45. Huentelman MJ, Papassotiropoulos A, Craig DW, Hoerndli FJ, Pearson JV, Huynh KD,
et al. Calmodulin-binding transcription activator 1 (
CAMTA1) alleles predispose human episodic memory performance. Hum Mol Genet 2007;16:1469–1477.
46. Hooli BV, Kovacs-Vajna ZM, Mullin K, Blumenthal MA, Mattheisen M, Zhang C,
et al. Rare autosomal copy number variations in early-onset familial Alzheimer's disease. Mol Psychiatry 2014;19:676–681.
47. Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Series B Stat Methodol 2006;68:49–67.
48. Zhang CH. Nearly unbiased variable selection under minimax concave penalty. Ann Stat 2010;38:894–942.