1. Ashley EA. The precision medicine initiative: a new national effort. JAMA 2015;313:2119–2120.
3. Riddick G, Song H, Ahn S, Walling J, Borges-Rivera D, Zhang W,
et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 2011;27:220–224.
8. Shivakumar P, Krauthammer M. Structural similarity assessment for drug sensitivity prediction in cancer. BMC Bioinformatics 2009;10 Suppl 9:S17.
9. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S,
et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013;41:D955–D961.
10. De Niz C, Rahman R, Zhao X, Pal R. Algorithms for drug sensitivity prediction. Algorithms 2016;9:77.
11. Benesty J, Chen J, Huang Y, Cohen I. Noise Reduction in Speech Processing. Vol. 2. Berlin: Springer, 2009. pp. 37-40.
12. Kim JH, Yim SH, Jeong YB, Jung SH, Xu HD, Shin SH,
et al. Comparison of normalization methods for defining copy number variation using whole-genome SNP genotyping data. Genomics Inform 2008;6:231–234.
13. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B 2005;67:301–320.
14. Basak D, Pal S, Ch D, Patranabis R. Support vector regression. Neural Inf Process Lett Rev 2007;11:203–224.
15. Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016 Aug 13-17; San Francisco, CA, USA: New York: ACM, 2016. pp 785–794.
16. Bisong E. Building Machine Learning and Deep Learning Mdels on Google Cloud Platform: A Comprehensive Guide for Beginners. Berkeley, CA: Apress, 2019. pp. 151–165.
17. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O,
et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10:1523.
19. Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R,
et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 2007;6:2209–2219.
20. Drakos E, Singh RR, Rassidakis GZ, Schlette E, Li J, Claret FX,
et al. Activation of the p53 pathway by the MDM2 inhibitor nutlin-3a overcomes BCL2 overexpression in a preclinical model of diffuse large B-cell lymphoma associated with t(14;18)(q32;q21). Leukemia 2011;25:856–867.
22. Rinaldo C, Prodosmo A, Siepi F, Moncada A, Sacchi A, Selivanova G,
et al. HIPK2 regulation by MDM2 determines tumor cell response to the p53-reactivating drugs nutlin-3 and RITA. Cancer Res 2009;69:6241–6248.
23. Liu M, Liu H, Chen J. Mechanisms of the CDK4/6 inhibitor palbociclib (PD 0332991) and its future application in cancer treatment (Review). Oncol Rep 2018;39:901–911.