2. Asri H, Mousannif H, Moatassime HA, Noel T. Using machine learning algorithms for breast cancer risk prediction and diagnosis. Proc Comput Sci 2016;83:1064–1069.
3. Agrawal S, Agrawal J. Neural network techniques for cancer prediction: a survey. Proc Comput Sci 2015;60:769–774.
4. Jakimovski G, Davcev D. Using double convolution neural network for lung cancer stage detection. Appl Sci 2019;9:427.
5. Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer 2019;5:157–169.
6. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015;13:8–17.
8. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,
et al. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res 2013;41:D991–D995.
10. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L,
et al. Neuroblastoma. Nat Rev Dis Primers 2016;2:16078.
12. Salazar BM, Balczewski EA, Ung CY, Zhu S. Neuroblastoma, a paradigm for big data science in pediatric oncology. Int J Mol Sci 2016;18:E37.
13. Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K,
et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology 2011;261:243–257.
15. Rajbhandari P, Lopez G, Capdevila C, Salvatori B, Yu J, Rodriguez-Barrueco R,
et al. Cross-cohort analysis identifies a TEAD4-MYCN positive feedback loop as the core regulatory element of high-risk neuroblastoma. Cancer Discov 2018;8:582–599.
16. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (ODSI ’16), 2016 Nov 2-4, Savannah, GA, USA. Berkeley: The Advanced Computing Systems Association, 2016. pp. 265–283.
17. Kautz T, Eskofier BM, Pasluosta CF. Generic performance measure for multiclass-classifiers. Pattern Recognit 2017;68:111–125.