1. Aitken ML, Limaye A, Pottinger P, Whimbey E, Goss CH, Tonelli MR,
et al. Respiratory outbreak of
Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 2012;185:231–232.
2. Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A, Le Chevalier F,
et al. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent
Mycobacterium abscessus. Mol Microbiol 2013;90:612–629.
3. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T,
et al. Whole-genome sequencing to identify transmission of
Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 2013;381:1551–1560.
4. Gordon SV, Bottai D, Simeone R, Stinear TP, Brosch R. Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants. Bioessays 2009;31:378–388.
6. Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD,
et al. Insights from the complete genome sequence of
Mycobacterium marinum on the evolution of
Mycobacterium tuberculosis. Genome Res 2008;18:729–741.
7. Kaur D, Guerin ME, Skovierova H, Brennan PJ, Jackson M. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of
Mycobacterium tuberculosis. Adv Appl Microbiol 2009;69:23–78.
9. Shang S, Gibbs S, Henao-Tamayo M, Shanley CA, McDonnell G, Duarte RS,
et al. Increased virulence of an epidemic strain of
Mycobacterium massiliense in mice. PLoS One 2011;6:e24726.
10. Koch A, Mizrahi V.
Mycobacterium tuberculosis. Trends Microbiol 2018;26:555–556.
11. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M,
et al. Ancient origin and gene mosaicism of the progenitor of
Mycobacterium tuberculosis. PLoS Pathog 2005;1:e5.
12. Sambou T, Dinadayala P, Stadthagen G, Barilone N, Bordat Y, Constant P,
et al. Capsular glucan and intracellular glycogen of
Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol 2008;70:762–774.
13. Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K, van Zon M,
et al. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 2010;6:e1000794.
14. Dhanuka R, Singh JP. Protein function prediction using functional inter-relationship. Comput Biol Chem 2021;95:107593.
17. dos Santos GC, dos Santos DM, Olivieri JR, Canduri F, Silva RG,
et al. Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase. Biochem Biophys Res Commun 2003;309:923–928.
19. de Azevedo WF. Molecular dynamics simulations of protein targets identified in
Mycobacterium tuberculosis. Curr Med Chem 2011;18:1353–1366.
20. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571-607.
22. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006;64:643–651.
24. Tusnady GE, Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 1998;283:489–506.
27. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–580.
28. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S,
et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017;45:D200–D203.
30. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR,
et al. Pfam: the protein families database. Nucleic Acids Res 2014;42:D222–D230.
32. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A,
et al. New and continuing developments at PROSITE. Nucleic Acids Res 2013;41:D344–D347.
33. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–D613.
34. Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Trends Biochem Sci 2000;25:147–150.
37. Bitencourt-Ferreira G, de Azevedo WF Jr. Homology modeling of protein targets with MODELLER. Methods Mol Biol 2019;2053:231–249.
38. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M,
et al. A Completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018;430:2237–2243.
40. Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Soding J,
et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics 2020;72:e108.
41. Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991;253:164–170.
46. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R; Open Source Drug Discovery Consortium,
et al.
In silico approach for predicting toxicity of peptides and proteins. PLoS One 2013;8:e73957.
47. Zhou P. Determining protein half-lives. Methods Mol Biol 2004;284:67–77.
50. Saikat AS, Uddin ME, Ahmad T, Mahmud S, Imran MA, Ahmed S,
et al. Structural and functional elucidation of IF-3 protein of
Chloroflexus aurantiacus involved in protein biosynthesis: an in silico approach. Biomed Res Int 2021;2021:9050026.
51. Schneider G, Fechner U. Advances in the prediction of protein targeting signals. Proteomics 2004;4:1571–1580.
52. Saikat AS. An
in silico approach for potential natural compounds as inhibitors of protein CDK1/Cks2. Chem Proc 2021;8:5.
57. Walther TH, Ulrich AS. Transmembrane helix assembly and the role of salt bridges. Curr Opin Struct Biol 2014;27:63–68.
58. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY,
et al. CDD: NCBI's conserved domain database. Nucleic Acids Res 2015;43:D222–D226.
59. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C,
et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011;39:D225–D229.
61. Goulding CW, Apostol MI, Gleiter S, Parseghian A, Bardwell J, Gennaro M,
et al. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs: a structure to function analysis of DsbE from
Mycobacterium tuberculosis. J Biol Chem 2004;279:3516–3524.
63. Holmgren A. Thioredoxin. Annu Rev Biochem 1985;54:237–271.
64. Gleason FK, Holmgren A. Thioredoxin and related proteins in procaryotes. FEMS Microbiol Rev 1988;4:271–297.
65. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989;264:13963–13966.
66. Eklund H, Gleason FK, Holmgren A. Structural and functional relations among thioredoxins of different species. Proteins 1991;11:13–28.
68. Kim MK, Zhao L, Jeong S, Zhang J, Jung JH, Seo HS,
et al. Structural and biochemical characterization of thioredoxin-2 from
Deinococcus radiodurans. Antioxidants (Basel) 2021;10:1843.
69. Marsh JA, Teichmann SA. Structure, dynamics, assembly, and evolution of protein complexes. Annu Rev Biochem 2015;84:551–575.
70. Sowmya G, Ranganathan S. Protein-protein interactions and prediction: a comprehensive overview. Protein Pept Lett 2014;21:779–789.
73. Chim N, Riley R, The J, Im S, Segelke B, Lekin T,
et al. An extracellular disulfide bond forming protein (DsbF) from
Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J Mol Biol 2010;396:1211–1226.
74. Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F,
et al. Rv2969c, essential for optimal growth in
Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. Acta Crystallogr D Biol Crystallogr 2013;69:1981–1994.
79. Uversky VN. Protein intrinsic disorder and structure-function continuum. Prog Mol Biol Transl Sci 2019;166:1–17.
80. Hu J, Han J, Li H, Zhang X, Liu LL, Chen F,
et al. Human embryonic kidney 293 cells: a vehicle for biopharmaceutical manufacturing, structural biology, and electrophysiology. Cells Tissues Organs 2018;205:1–8.
82. Hegyi H, Gerstein M. The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J Mol Biol 1999;288:147–164.
84. Lobb B, Doxey AC. Novel function discovery through sequence and structural data mining. Curr Opin Struct Biol 2016;38:53–61.
86. Saikat AS, Islam R, Mahmud S, Imran MA, Alam MS, Masud MH,
et al. Structural and functional annotation of uncharacterized protein NCGM946K2_146 of
Mycobacterium tuberculosis: an
in-silico approach. Proceedings 2020;66:13.
90. Riese P, Schulze K, Ebensen T, Prochnow B, Guzman CA. Vaccine adjuvants: key tools for innovative vaccine design. Curr Top Med Chem 2013;13:2562–2580.
91. De Groot AS, Moise L, Terry F, Gutierrez AH, Hindocha P, Richard G,
et al. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools. Front Immunol 2020;11:442.
94. Crowcroft NS, Klein NP. A framework for research on vaccine effectiveness. Vaccine 2018;36:7286–7293.
99. Duan X, Zhang M, Chen F. Prediction and analysis of antimicrobial peptides from rapeseed protein using
in silico approach. J Food Biochem 2021;45:e13598.
101. Gopinatth V, Mendez RL, Ballinger E, Kwon JY. Therapeutic potential of tuna backbone peptide and its analogs: an
in vitro and
in silico study. Molecules 2021;26:2064.