1. Altekruse SF, Stern NJ, Fields PI, Swerdlow DL.
Campylobacter jejuni: an emerging foodborne pathogen. Emerg Infect Dis 1999;5:28–35.
2. Balaban M, Hendrixson DR. Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in
Campylobacter jejuni. PLoS Pathog 2011;7:e1002420.
3. Young KT, Davis LM, Dirita VJ.
Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 2007;5:665–679.
4. Allos BM.
Campylobacter jejuni Infections: update on emerging issues and trends. Clin Infect Dis 2001;32:1201–1206.
5. Snelling WJ, Matsuda M, Moore JE, Dooley JS. Campylobacter jejuni. Lett Appl Microbiol 2005;41:297–302.
6. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D,
et al. The genome sequence of the food-borne pathogen
Campylobacter jejuni reveals hypervariable sequences. Nature 2000;403:665–668.
7. Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM,
et al. Exploration of uncharted regions of the protein universe. PLoS Biol 2009;7:e1000205.
8. Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Detection of functionally important regions in "hypothetical proteins" of known structure. Structure 2008;16:1755–1763.
9. Ferdous N, Reza MN, Emon MT, Islam MS, Mohiuddin AK, Hossain MU. Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of
Streptomyces coelicolor A3(2). Genomics Inform 2020;18:e28.
10. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–D613.
11. Jez JM. Revisiting protein structure, function, and evolution in the genomic era. J Invertebr Pathol 2017;142:11–15.
12. Stahl M, Butcher J, Stintzi A. Nutrient acquisition and metabolism by
Campylobacter jejuni. Front Cell Infect Microbiol 2012;2:5.
13. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402.
18. Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522–2524.
19. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R,
et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608–1615.
21. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292:195–202.
22. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M,
et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018;430:2237–2243.
23. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J,
et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 2009;77 Suppl 9:114–122.
24. Likova E, Petkov P, Ilieva N, Litov L. The PyMOL Molecular Graphics System, version 2.0. New York: Schrödinger, LLC, 2015.
25. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283–291.
26. Eisenberg D, Luthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 1997;277:396–404.
28. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C,
et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011;39:D225–D229.
29. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C,
et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014;30:1236–1240.
31. Eng J. ROC analysis: web-based calculator for ROC curves. Baltimore: Johns Hopkins University, 2014. Accessed 2021 Nov 30. Available from:
http://www.jrocfit.org.
32. Halarnkar PP, Blomquist GJ. Comparative aspects of propionate metabolism. Comp Biochem Physiol B 1989;92:227–231.
34. Horswill AR, Escalante-Semerena JC.
In vitro conversion of propionate to pyruvate by
Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry 2001;40:4703–4713.
35. Blank L, Green J, Guest JR. AcnC of
Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology (Reading) 2002;148:133–146.
36. Lohkamp B, Bauerle B, Rieger PG, Schneider G. Three-dimensional structure of iminodisuccinate epimerase defines the fold of the MmgE/PrpD protein family. J Mol Biol 2006;362:555–566.
37. Kanamasa S, Dwiarti L, Okabe M, Park EY. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from
Aspergillus terreus. Appl Microbiol Biotechnol 2008;80:223–229.
38. Reddick JJ, Sirkisoon S, Dahal RA, Hardesty G, Hage NE, Booth WT,
et al. First biochemical characterization of a methylcitric acid cycle from
Bacillus subtilis strain 168. Biochemistry 2017;56:5698–5711.