1. Kumar A, Thotakura PL, Tiwary BK, Krishna R. Target identification in
Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions. BMC Microbiol 2016;16:84.
3. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M,
et al.
Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013;14:207–215.
4. Kapatral V, Anderson I, Ivanova N, Reznik G, Los T, Lykidis A,
et al. Genome sequence and analysis of the oral bacterium
Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 2002;184:2005–2018.
5. Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Detection of functionally important regions in "hypothetical proteins" of known structure. Structure 2008;16:1755–1763.
6. Gazi MA, Mahmud S, Fahim SM, Islam MR, Das S, Mahfuz M,
et al. Questing functions and structures of hypothetical proteins from
Campylobacter jejuni: a computer-aided approach. Biosci Rep 2020;40:BSR20193939.
7. Kaur H, Singh V, Kalia M, Mohan B, Taneja N. Identification and functional annotation of hypothetical proteins of uropathogenic
Escherichia coli strain CFT073 towards designing antimicrobial drug targets. J Biomol Struct Dyn 2022;40:14084–14095.
9. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa, NJ: Humana Press, 2005. pp. 571–607.
11. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S,
et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 2019;37:420–423.
12. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–580.
17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410.
18. Eng J. ROC analysis: web-based calculator for ROC curves. Baltimore: Johns Hopkins Medicine, 2014. Accessed 2022 Sep 29. Available from:
http://www.jrocfit.org.
20. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR,
et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46:D1074–D1082.
21. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R,
et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46:W296–W303.
23. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM. PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 1997;22:488–490.
27. Nielsen H. Predicting Secretory Proteins with SignalP. Methods Mol Biol 2017;1611:59–73.
28. Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci 2015;370.
29. Parveen N, Cornell KA. Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol Microbiol 2011;79:7–20.
30. Kim J, Hetzel M, Boiangiu CD, Buckel W. Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. FEMS Microbiol Rev 2004;28:455–468.
31. Tanaka S, Maeda Y, Tashima Y, Kinoshita T. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 2004;279:14256–14263.
35. Santa Maria J, Vallance P, Charles IG, Leiper JM. Identification of microbial dimethylarginine dimethylaminohydrolase enzymes. Mol Microbiol 1999;33:1278–1279.
37. Whiteman PA, Abraham EP, Baldwin JE, Fleming MD, Schofield CJ, Sutherland JD,
et al. Acyl coenzyme A: 6-aminopenicillanic acid acyltransferase from
Penicillium chrysogenum and
Aspergillus nidulans. FEBS Lett 1990;262:342–344.
39. Diethmaier C, Newman JA, Kovacs AT, Kaever V, Herzberg C, Rodrigues C,
et al. The YmdB phosphodiesterase is a global regulator of late adaptive responses in
Bacillus subtilis. J Bacteriol 2014;196:265–275.
43. Xu Q, Rawlings ND, Chiu HJ, Jaroszewski L, Klock HE, Knuth MW,
et al. Structural analysis of papain-like NlpC/P60 superfamily enzymes with a circularly permuted topology reveals potential lipid binding sites. PLoS One 2011;6:e22013.
45. Salillas S, Sancho J. Flavodoxins as novel therapeutic targets against
Helicobacter pylori and other gastric pathogens. Int J Mol Sci 2020;21:1881.
48. Hama H, Kayahara T, Ogawa W, Tsuda M, Tsuchiya T. Enhancement of serine-sensitivity by a gene encoding rhodanese-like protein in
Escherichia coli. J Biochem 1994;115:1135–1140.
50. Boggild A, Sofos N, Andersen KR, Feddersen A, Easter AD, Passmore LA,
et al. The crystal structure of the intact
E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity. Structure 2012;20:1641–1648.
51. Jiang Y, Pogliano J, Helinski DR, Konieczny I. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of
Escherichia coli gyrase. Mol Microbiol 2002;44:971–979.
54. Rudolph CJ, Upton AL, Briggs GS, Lloyd RG. Is RecG a general guardian of the bacterial genome? DNA Repair (Amst) 2010;9:210–223.
56. Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H,
et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci U S A 2001;98:14895–14900.
57. Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S. Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 1997;24:355–371.
59. Hudson AM, Cooley L. Phylogenetic, structural and functional relationships between WD- and Kelch-repeat proteins. Subcell Biochem 2008;48:6–19.
60. Caruthers JM, McKay DB. Helicase structure and mechanism. Curr Opin Struct Biol 2002;12:123–133.
61. Zhang X, Carter MS, Vetting MW, San Francisco B, Zhao S, Al-Obaidi NF,
et al. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc Natl Acad Sci U S A 2016;113:E4161–E4169.
64. Andrade MA, Perez-Iratxeta C, Ponting CP. Protein repeats: structures, functions, and evolution. J Struct Biol 2001;134:117–131.
67. Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE,
et al. A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 2004;23:2931–2941.
68. Deng YM, Liu CQ, Dunn NW. Genetic organization and functional analysis of a novel phage abortive infection system, AbiL, from
Lactococcus lactis. J Biotechnol 1999;67:135–149.
70. Gutierrez JA, Crowley PJ, Cvitkovitch DG, Brady LJ, Hamilton IR, Hillman JD,
et al.
Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology (Reading) 1999;145(Pt 2):357–366.
72. Fardini Y, Wang X, Temoin S, Nithianantham S, Lee D, Shoham M,
et al.
Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol 2011;82:1468–1480.
74. McCallum M, Tammam S, Little DJ, Robinson H, Koo J, Shah M,
et al. PilN binding modulates the structure and binding partners of the
Pseudomonas aeruginosa type IVa pilus protein PilM. J Biol Chem 2016;291:11003–11015.
76. Zhuang N, Zhang H, Li L, Wu X, Yang C, Zhang Y. Crystal structures and biochemical analyses of the bacterial arginine dihydrolase ArgZ suggests a "bond rotation" catalytic mechanism. J Biol Chem 2020;295:2113–2124.
77. Kachalova GS, Rogulin EA, Yunusova AK, Artyukh RI, Perevyazova TA, Matvienko NI,
et al. Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit. J Mol Biol 2008;384:489–502.
78. Hou HF, Gao ZQ, Li LF, Liang YH, Su XD, Dong YH. Crystal structure of SMU.848 from
Streptococcus mutans. Protein Data Bank. Accessed 2023 Jan 1. Bethesda: National Cancer Institute, 2006. Available from:
https://www.rcsb.org/structure/2g0j.
80. Zhou J, Du XJ, Liu Y, Gao ZQ, Geng Z, Dong YH,
et al. Insights into the neutralization and DNA binding of toxin-antitoxin system ParE(SO)-CopA(SO) by structure-function studies. Microorganisms 2021;9:2506.
83. Karkowska-Kuleta J, Bartnicka D, Zawrotniak M, Zielinska G, Kieronska A, Bochenska O,
et al. The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen
Porphyromonas gingivalis and opportunistic fungus
Candida albicans. Pathog Dis 2018;76:fty033.
84. Wissenbach U, Six S, Bongaerts J, Ternes D, Steinwachs S, Unden G. A third periplasmic transport system for L-arginine in
Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport. Mol Microbiol 1995;17:675–686.