1. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005;15:1034–1050.
2. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K,
et al. A mosaic activating mutation in
AKT1 associated with the Proteus syndrome. N Engl J Med 2011;365:611–619.
3. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI,
et al. Exome sequencing identifies
MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010;42:790–793.
4. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J,
et al.
De novo gene disruptions in children on the autistic spectrum. Neuron 2012;74:285–299.
5. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD,
et al.
De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013;498:220–223.
6. Veltman JA, Brunner HG.
De novo mutations in human genetic disease. Nat Rev Genet 2012;13:565–575.
7. Smith TCA, Arndt PF, Eyre-Walker A. Large scale variation in the rate of germ-line
de novo mutation, base composition, divergence and diversity in humans. PLoS Genet 2018;14:e1007254.
9. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA,
et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 2013;155:997–1007.
10. Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P,
et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci U S A 2014;111:E4468–E4477.
12. An JY, Lin K, Zhu L, Werling DM, Dong S, Brand H,
et al. Genome-wide
de novo risk score implicates promoter variation in autism spectrum disorder. Science 2018;362:eaat6576.
13. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A,
et al. The Ensembl Variant Effect Predictor. Genome Biol 2016;17:122.
14. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q,
et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. Cold Spring Harbor: bioRXiv, Cold Spring Harbor Laboratory, 2019. Accessed 2018 Sep 10. Available from:
https://doi.org/10.1101/531210.
15. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N,
et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019;47:D941–D947.
20. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J,
et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 2019;47:D766–D773.
21. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S,
et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018;46:D1062–D1067.
27. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K,
et al. Mutational processes molding the genomes of 21 breast cancers. Cell 2012;149:979–993.
29. Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Turki SA,
et al. Timing, rates and spectra of human germline mutation. Nat Genet 2016;48:126–133.
32. Milone M, Shen XM, Selcen D, Ohno K, Brengman J, Iannaccone ST,
et al. Myasthenic syndrome due to defects in rapsyn: clinical and molecular findings in 39 patients. Neurology 2009;73:228–235.
33. Maselli R, Dris H, Schnier J, Cockrell J, Wollmann R. Congenital myasthenic syndrome caused by two non-N88K rapsyn mutations. Clin Genet 2007;72:63–65.