2. World Health Organization. WHO coronavirus (COVID-19) dashboard. Geneva: World Health Organization, 2023. Accessed 2022 Jan 2. Available from:
https://covid19.who.int/.
7. Menni C, May A, Polidori L, Louca P, Wolf J, Capdevila J,
et al. COVID-19 vaccine waning and effectiveness and side-effects of boosters: a prospective community study from the ZOE COVID Study. Lancet Infect Dis 2022;22:1002–1010.
8. Haas EJ, McLaughlin JM, Khan F, Angulo FJ, Anis E, Lipsitch M,
et al. Infections, hospitalisations, and deaths averted via a nationwide vaccination campaign using the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine in Israel: a retrospective surveillance study. Lancet Infect Dis 2022;22:357–366.
9. Lopez Bernal J, Andrews N, Gower C, Robertson C, Stowe J, Tessier E,
et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ 2021;373:n1088.
10. Cabezas C, Coma E, Mora-Fernandez N, Li X, Martinez-Marcos M, Fina F,
et al. Associations of BNT162b2 vaccination with SARS-CoV-2 infection and hospital admission and death with COVID-19 in nursing homes and healthcare workers in Catalonia: prospective cohort study. BMJ 2021;374:n1868.
11. Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S,
et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N Engl J Med 2021;385:e84.
14. de la Fuente-Mella H, Rubilar R, Chahuan-Jimenez K, Leiva V. Modeling COVID-19 cases statistically and evaluating their effect on the economy of countries. Mathematics 2021;9:1558.
16. Biggerstaff M, Cowling BJ, Cucunuba ZM, Dinh L, Ferguson NM, Gao H,
et al. Early insights from statistical and mathematical modeling of key epidemiologic parameters of COVID-19. Emerg Infect Dis 2020;26:e1–e14.
19. Singh RK, Rani M, Bhagavathula AS, Sah R, Rodriguez-Morales AJ, Kalita H,
et al. Prediction of the COVID-19 pandemic for the Top 15 affected countries: advanced Autoregressive Integrated Moving Average (ARIMA) model. JMIR Public Health Surveill 2020;6:e19115.
21. Kapoor A, Ben X, Liu L, Perozzi B, Barnes M, Blais M,
et al. Examining COVID-19 forecasting using spatio-temporal graph neural networks. Preprint at
https://arxiv.org/abs/2007.03113 (2020).
23. Rauf HT, Lali MI, Khan MA, Kadry S, Alolaiyan H, Razaq A,
et al. Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks. Pers Ubiquitous Comput 2023;27:733–750.
28. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc Lond A 1927;115:700–721.
29. Shankar S, Mohakuda SS, Kumar A, Nazneen PS, Yadav AK, Chatterjee K,
et al. Systematic review of predictive mathematical models of COVID-19 epidemic. Med J Armed Forces India 2021;77:S385–S392.
30. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S,
et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis 2020;20:553–558.
34. Oliveira EA, Oliveira MC, Colosimo EA, Simoes ES, Mak RH, Vasconcelos MA,
et al. Vaccine effectiveness against SARS-CoV-2 variants in adolescents from 15 to 90 days after second dose: a population-based test-negative case-control study. J Pediatr 2023;253:189–196.
35. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C,
et al. A global database of COVID-19 vaccinations. Nat Hum Behav 2021;5:947–953.
36. Korea COVID-19 Dashboard. Sejong: Ministry of Health Welfare, 2022. Accessed 2022 Jan 2. Available from:
https://ncov.kdca.go.kr/en/.
37. Hodcroft EB. CoVariants: SARS-CoV-2 mutations and variants of interest. CoVariants, 2021. Accessed 2022 Jan 2. Available from:
https://covariants.org/.
38. Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A,
et al. GISAID's role in pandemic response. China CDC Wkly 2021;3:1049–1051.
41. Box GE, Jenkins GM. Time Series Analysis: Forecasting and Control. San Franciso: Holden-Day, 1970.
42. Yaffee RA, McGee M. An Introduction to Time Series Analysis and Forecasting: With Applications of SAS and SPSS. Amsterdam: Elsevier, 2000.
43. Darapaneni N, Reddy D, Paduri AR, Acharya P, Nithin HS. Forecasting of COVID-19 in India using ARIMA model. In: 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), 2020 Oct 28-31; New York, NY, USA: Piscataway: Institute of Electrical and Electronics Engineers, 2020.
44. Akaike H. Information theory and an extension of the maximum likelihood principle. In: 2nd International Symposium on Information Theory (Petrov N, Caski F, eds.). Akademiai Kiado, Budapest, Hungary: pp. 267–281.
45. Hastie T, Tibshirani R. Generalized additive models. Stat Sci 1986;1:297–310.
46. Wood SN. Thin plate regression splines. J R Stat Soc Ser B Stat Methodol 2003;65:95–114.
47. Wood SN. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 2004;99:673–686.
48. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol 2011;73:3–36.
49. Liboschik T, Fokianos K, Fried R. tscount: an R package for analysis of count time series following generalized linear models. J Stat Softw 2017;82:1–51.
50. Gumaei A, Al-Rakhami M, Al Rahhal MM, Albogamy FR, Al Maghayreh E, AlSalman H. Prediction of COVID-19 confirmed cases using gradient boosting regression method. Comput Mater Continua 2021;66:315–329.
51. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems (NIPS 2017), 2017 Dec; Long Beach, CA, USA: pp 3146–3154.
52. Yan B, Tang X, Liu B, Wang J, Zhou Y, Zheng G,
et al. An improved method for the fitting and prediction of the number of COVID-19 confirmed cases based on LSTM. Preprint arXiv at:
https://doi.org/10.48550/arXiv.2005.03446 (2020).
53. Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw 2005;18:602–610.
55. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW,
et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323:2052–2059.
56. Thanh Le T, Andreadakis Z, Kumar A, Gomez Roman R, Tollefsen S, Saville M,
et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020;19:305–306.
58. Oliver SE, Gargano JW, Marin M, Wallace M, Curran KG, Chamberland M,
et al. The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine - United States, December 2020. MMWR Morb Mortal Wkly Rep 2020;69:1922–1924.
59. Tanne JH. Covid-19: FDA panel votes to approve Pfizer BioNTech vaccine. BMJ 2020;371:m4799.
61. Mohammed I, Nauman A, Paul P, Ganesan S, Chen KH, Jalil SMS,
et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review. Hum Vaccin Immunother 2022;18:2027160.