1. World Health Organization. Global Tuberculosis Report 2020: Executive Summary. Geneva: World Health Organization, 2020.
2. World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2019.
3. World Health Organization. Global tuberculosis report 2016. Geneva: World Health Organization, 2016.
6. World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis. Geneva: World Health Organization, 2016.
7. Hema K, Priyadarshini VI, Pradhan D, Munikumar M, Sandeep S, Pradeep N,
et al. Identification of putative drug targets and vaccine candidates for pathogens causing atherosclerosis. Biochem Anal Biochem 2015;4:175.
8. Almeida Da Silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in
Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 2011;66:1417–1430.
11. Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in
Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 2018;73:1138–1151.
12. Buchy P, Ascioglu S, Buisson Y, Datta S, Nissen M, Tambyah PA,
et al. Impact of vaccines on antimicrobial resistance. Int J Infect Dis 2020;90:188–196.
14. Xing Z, Charters TJ. Heterologous boost vaccines for bacillus Calmette-Guerin prime immunization against tuberculosis. Expert Rev Vaccines 2007;6:539–546.
15. Parida SK, Kaufmann SH. Novel tuberculosis vaccines on the horizon. Curr Opin Immunol 2010;22:374–384.
16. Horvath CN, Xing Z. Immunization strategies against pulmonary tuberculosis: considerations of T cell geography. Adv Exp Med Biol 2013;783:267–278.
17. Hussey G, Hawkridge T, Hanekom W. Childhood tuberculosis: old and new vaccines. Paediatr Respir Rev 2007;8:148–154.
18. Zhang W, Zhang Y, Zheng H, Pan Y, Liu H, Du P,
et al. Genome sequencing and analysis of BCG vaccine strains. PLoS One 2013;8:e71243.
19. Singh SP, Mishra BN. Major histocompatibility complex linked databases and prediction tools for designing vaccines. Hum Immunol 2016;77:295–306.
20. Hanekom M, Gey van Pittius NC, McEvoy C, Victor TC, Van Helden PD, Warren RM.
Mycobacterium tuberculosis Beijing genotype: a template for success. Tuberculosis (Edinb) 2011;91:510–523.
21. Mendez-Samperio P. Novel vaccination strategies and approaches against human tuberculosis. Scand J Immunol 2019;90:e12774.
22. Marciano BE, Huang CY, Joshi G, Rezaei N, Carvalho BC, Allwood Z,
et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol 2014;133:1134–1141.
23. Barkai G, Somech R, Stauber T, Barziali A, Greenberger S. Bacille Calmette-Guerin (BCG) complications in children with severe combined immunodeficiency (SCID). Infect Dis (Lond) 2019;51:585–592.
27. Martin C, Aguilo N, Marinova D, Gonzalo-Asensio JJ. Update on TB vaccine pipeline. Appl Sci 2020;10:2632.
29. de Sarom A, Kumar Jaiswal A, Tiwari S, de Castro Oliveira L, Barh D, Azevedo V,
et al. Putative vaccine candidates and drug targets identified by reverse vaccinology and subtractive genomics approaches to control
Haemophilus ducreyi, the causative agent of chancroid. J R Soc Interface 2018;15:20180032.
30. Mahmud A, Khan MT, Iqbal A. Identification of novel drug targets for humans and potential vaccine targets for cattle by subtractive genomic analysis of
Brucella abortus strain 2308. Microb Pathog 2019;137:103731.
31. Khan MT, Mahmud A, Iqbal A, Hoque SF, Hasan M. Subtractive genomics approach towards the identification of novel therapeutic targets against human
Bartonella bacilliformis. Inf Med Inlocked 2020;20:100385.
32. Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R,
et al. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. Inform Med Unlocked 2021;24:100578.
33. Khan MT, Islam R, Jerin TJ, Mahmud A, Khatun S, Kobir A,
et al. Immunoinformatics and molecular dynamics approaches: next generation vaccine design against West Nile virus. PLoS One 2021;16:e0253393.
34. Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discov Today 2020;25:1034–1042.
36. Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A,
et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol 2013;9:e1003266.
38. Zhu S, Feng Y, Rao P, Xue X, Chen S, Li W,
et al. Hepatitis B virus surface antigen as delivery vector can enhance
Chlamydia trachomatis MOMP multi-epitope immune response in mice. Appl Microbiol Biotechnol 2014;98:4107–4117.
39. Jiang P, Cai Y, Chen J, Ye X, Mao S, Zhu S,
et al. Evaluation of tandem
Chlamydia trachomatis MOMP multi-epitopes vaccine in BALB/c mice model. Vaccine 2017;35:3096–3103.
40. Pumchan A, Krobthong S, Roytrakul S, Sawatdichaikul O, Kondo H, Hirono I,
et al. Novel chimeric multiepitope vaccine for streptococcosis disease in Nile Tilapia (
Oreochromis niloticus Linn.). Sci Rep 2020;10:603.
41. Caro-Gomez E, Gazi M, Goez Y, Valbuena G. Discovery of novel cross-protective
Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and
in vivo screening approach. Vaccine 2014;32:4968–4976.
42. Lin X, Chen S, Xue X, Lu L, Zhu S, Li W,
et al. Chimerically fused antigen rich of overlapped epitopes from latent membrane protein 2 (LMP2) of Epstein-Barr virus as a potential vaccine and diagnostic agent. Cell Mol Immunol 2016;13:492–501.
43. Yusufu M, Shalitanati A, Yu H, Moming A, Li Y, Deng F,
et al. Immune responses in mice induced by multi-epitope DNA vaccine and protein vaccine of Crimean-Congo hemorrhagic fever virus. Preprint at:
https://doi.org/10.1101/719724 (2019).
44. Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A. Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute
Toxoplasma gondii infection induces strong B and T cell responses in mice. Comp Immunol Microbiol Infect Dis 2020;69:101413.
45. Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to
Mycobacterium tuberculosis in humans. Immunol Rev 2015;264:74–87.
47. Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with
Mycobacterium tuberculosis. J Immunol 2007;178:7222–7234.
48. Kozakiewicz L, Phuah J, Flynn J, Chan J. The role of B cells and humoral immunity in
Mycobacterium tuberculosis infection. Adv Exp Med Biol 2013;783:225–250.
49. Melly G, Purdy GE. MmpL proteins in physiology and pathogenesis of
M. tuberculosis. Microorganisms 2019;7:70.
51. Wells RM, Jones CM, Xi Z, Speer A, Danilchanka O, Doornbos KS,
et al. Discovery of a siderophore export system essential for virulence of
Mycobacterium tuberculosis. PLoS Pathog 2013;9:e1003120.
54. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D,
et al. Deciphering the biology of
Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393:537–544.
56. Uddin R, Azam SS, Wadood A, Khan W, Farooq U, Khan A. Computational identification of potential drug targets against
Mycobacterium leprae. Med Chem Res 2016;25:473–481.
57. Gupta SK, Sarita S, Gupta MK, Pant KK, Seth PK. Definition of potential targets in Mycoplasma pneumoniae through subtractive genome analysis. J Antivir Antiretrovir 2010;2:38–41.
58. Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 2014;42:D574–D580.
59. Butt AM, Tahir S, Nasrullah I, Idrees M, Lu J, Tong Y. Mycoplasma genitalium: a comparative genomics study of metabolic pathways for the identification of drug and vaccine targets. Infect Genet Evol 2012;12:53–62.
60. Mondal SI, Ferdous S, Jewel NA, Akter A, Mahmud Z, Islam MM,
et al. Identification of potential drug targets by subtractive genome analysis of
Escherichia coli O157:H7: an
in silico approach. Adv Appl Bioinform Chem 2015;8:49–63.
61. Murali S, Jahageerdar S, Kumar S, Krishna G. Computational identification and screening of natural compounds as drug targets against the fish pathogen,
Pseudomonas fluorescens. Int J Curr Microbiol App Sci 2017;6:3521–3535.
62. Rahman A, Noore S, Hasan A, Ullah R, Rahman H, Hossain A,
et al. Identification of potential drug targets by subtractive genome analysis of
Bacillus anthracis A0248: an
in silico approach. Comput Biol Chem 2014;52:66–72.
63. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J,
et al. Ensembl 2018. Nucleic Acids Res 2018;46:D754–D761.
64. Hossain M, Chowdhury DU, Farhana J, Akbar MT, Chakraborty A, Islam S,
et al. Identification of potential targets in
Staphylococcus aureus N315 using computer aided protein data analysis. Bioinformation 2013;9:187–192.
65. Trivedi G, Georrge JJ. Identification of novel drug targets and its inhibitor from essential genes of human pathogenic gam positive bacteria. In: 9th National Level Science Symposium, 2016 Feb 14; Rajkot, India: pp 314–319.
68. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006;64:643–651.
70. Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522–2524.
71. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR,
et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46:D1074–D1082.
72. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Dordrecht: Springer, 2005. pp. 571–607.
73. Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen
Mycobacterium abscessus: a novel hierarchical
in silico approach. PLoS One 2013;8:e59126.
75. Doytchinova IA, Flower DR. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine 2007;25:856–866.
76. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–580.
77. Nalamolu RM, Pasala C, Katari SK, Amineni U. Discovery of common putative drug targets and vaccine candidates for
Mycobacterium tuberculosis sp. J Drug Deliv Ther 2019;9:67–71.
78. Sridhar S, Dash P, Guruprasad K. Comparative analyses of the proteins from
Mycobacterium tuberculosis and human genomes: identification of potential tuberculosis drug targets. Gene 2016;579:69–74.
79. Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R,
et al. Large-scale identification of protein-protein interaction of
Escherichia coli K-12. Genome Res 2006;16:686–691.
80. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–D613.
81. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. Methods Mol Biol 2007;406:89–112.
82. Usmani SS, Kumar R, Bhalla S, Kumar V, Raghava GPS.
In silico tools and databases for designing peptide-based vaccine and drugs. Adv Protein Chem Struct Biol 2018;112:221–263.
85. Saha S, Raghava GP. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006;65:40–48.
87. Dimitrov I, Flower DR, Doytchinova I. AllerTOP: a server for
in silico prediction of allergens. BMC Bioinformatics 2013;14 Suppl 6:S4.
88. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium,
et al.
In silico approach for predicting toxicity of peptides and proteins. PLoS One 2013;8:e73957.
91. Pandey RK, Ali M, Ojha R, Bhatt TK, Prajapati VK. Development of multi-epitope driven subunit vaccine in secretory and membrane protein of
Plasmodium falciparum to convey protection against malaria infection. Vaccine 2018;36:4555–4565.
92. Lee SJ, Shin SJ, Lee MH, Lee MG, Kang TH, Park WS,
et al. A potential protein adjuvant derived from
Mycobacterium tuberculosis Rv0652 enhances dendritic cells-based tumor immunotherapy. PLoS One 2014;9:e104351.
93. Khan MT, Mahmud A, Hasan M, Azim KF, Begum MK, Akter A,
et al. Proteome exploration of
Legionella pneumophila for identifying novel therapuetics: a hierarchical subtractive genomics and reverse vaccinology approach. Preprint at:
https://doi.org/10.1101/2020.02.03.922864 (2020).
94. Rahman MS, Hoque MN, Islam MR, Akter S, Rubayet Ul Alam A, Siddique MA,
et al. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2 etiologic agent of global pandemic COVID-19: an
in silico approach. PeerJ 2020;8:e9572.
98. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. ProCheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283–291.
102. Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 2004;57:678–683.
103. Krieger E, Nielsen JE, Spronk CA, Vriend G. Fast empirical pKa prediction by Ewald summation. J Mol Graph Model 2006;25:481–486.
106. Sarkar M, Maganti L, Ghoshal N, Dutta C.
In silico quest for putative drug targets in Helicobacter pylori HPAG1: molecular modeling of candidate enzymes from lipopolysaccharide biosynthesis pathway. J Mol Model 2012;18:1855–1866.
107. Hadizadeh M, Tabatabaiepour SN, Tabatabaiepour SZ, Hosseini Nave H, Mohammadi M, Sohrabi SM. Genome-wide identification of potential drug target in Enterobacteriaceae family: a homology-based method. Microb Drug Resist 2018;24:8–17.
109. Butt AM, Nasrullah I, Tahir S, Tong Y. Comparative genomics analysis of
Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates. PLoS One 2012;7:e43080.
110. Damte D, Suh JW, Lee SJ, Yohannes SB, Hossain MA, Park SC. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of
Mycoplasma hyopneumoniae. Genomics 2013;102:47–56.
111. Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H. Tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2009;2:9–22.
112. Hooper LV, Bry L, Falk PG, Gordon JI. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 1998;20:336–343.
113. Savage DC. Gastrointestinal microflora in mammalian nutrition. Annu Rev Nutr 1986;6:155–178.
114. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003;361:512–519.
115. Recanatini M, Bottegoni G, Cavalli A.
In silico antitarget screening. Drug Discov Today Technol 2004;1:209–215.
116. Fung M, Thornton A, Mybeck K, Wu JH, Hornbuckle K, Muniz E. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999. Drug Inf J 2001;35:293–317.
117. Fenner H. Evaluation of the efficacy and safety of NSAIDs. A new methodological approach. Scand J Rheumatol Suppl 1989;80:32–39.
119. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol 2000;3:445–450.
120. Birhanu BT, Lee SJ, Park NH, Song JB, Park SC.
In silico analysis of putative drug and vaccine targets of the metabolic pathways of
Actinobacillus pleuropneumoniae using a subtractive/comparative genomics approach. J Vet Sci 2018;19:188–199.
121. Uddin R, Siddiqui QN, Azam SS, Saima B, Wadood A. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant
Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach. Eur J Pharm Sci 2018;114:13–23.
122. Uddin R, Zahra NU, Azam SS. Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of
Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach. Comput Biol Chem 2019;79:91–102.
123. Dar HA, Zaheer T, Ullah N, Bakhtiar SM, Zhang T, Yasir M,
et al. Pangenome analysis of
Mycobacterium tuberculosis reveals core-drug targets and screening of promising lead compounds for drug discovery. Antibiotics (Basel) 2020;9:819.
124. Gupta D, Banerjee S, Pailan S, Saha P.
In silico identification and characterization of a hypothetical protein of
Mycobacterium tuberculosis EAI5 as a potential virulent factor. Bioinformation 2016;12:182–191.
125. Nain Z, Karim MM, Sen MK, Adhikari UK. Structural basis and designing of peptide vaccine using PE-PGRS family protein of
Mycobacterium ulcerans: an integrated vaccinomics approach. Mol Immunol 2020;120:146–163.
126. Li N, Liu P, Wang L, Liu J, Yuan X, Meng W,
et al. Effect of Ipr1 on expression levels of immune genes related to macrophage anti-infection of
Mycobacterium tuberculosis. Int J Clin Exp Med 2015;8:3411–3419.
127. Choi HG, Kim WS, Back YW, Kim H, Kwon KW, Kim JS,
et al.
Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells. Eur J Immunol 2015;45:1957–1971.
128. Pivarcsi A, Bodai L, Rethi B, Kenderessy-Szabo A, Koreck A, Szell M,
et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 2003;15:721–730.
129. Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K,
et al. Toll-like receptor 4 expression is required to control chronic
Mycobacterium tuberculosis infection in mice. J Immunol 2002;169:3155–3162.
130. Zare-Bidaki M, Hakimi H, Abdollahi SH, Zainodini N, Arababadi MK, Kennedy D. TLR4 in toxoplasmosis; friends or foe? Microb Pathog 2014;69-70:28–32.
131. Afsharimoghaddam A, Soleimani M, Lashay A, Dehghani M, Sepehri Z. Controversial roles played by toll like receptor 4 in urinary bladder cancer: a systematic review. Life Sci 2016;158:31–36.
132. Sepehri Z, Kiani Z, Kohan F, Ghavami S. Toll-like receptor 4 as an immune receptor against
Mycobacterium tuberculosis: a systematic review. Lab Med 2019;50:117–129.
133. Islam MJ, Parves MR, Mahmud S, Tithi FA, Reza MA. Assessment of structurally and functionally high-risk nsSNPs impacts on human bone morphogenetic protein receptor type IA (BMPR1A) by computational approach. Comput Biol Chem 2019;80:31–45.
134. Mahmud S, Parves MR, Riza YM, Sujon KM, Ray S, Tithi FA,
et al. Exploring the potent inhibitors and binding modes of phospholipase A2 through
in silico investigation. J Biomol Struct Dyn 2020;38:4221–4231.
135. Jeffrey GA. An introduction to hydrogen bonding. New York: Oxford university Press, 1997.
137. Bosshard HR, Marti DN, Jelesarov I. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. J Mol Recognit 2004;17:1–16.
138. Makhatadze GI, Loladze VV, Ermolenko DN, Chen X, Thomas ST. Contribution of surface salt bridges to protein stability: guidelines for protein engineering. J Mol Biol 2003;327:1135–1148.
142. Nguyen Thi LT, Sarmiento ME, Calero R, Camacho F, Reyes F, Hossain MM,
et al. Immunoinformatics study on highly expressed
Mycobacterium tuberculosis genes during infection. Tuberculosis (Edinb) 2014;94:475–481.
143. Rahmat Ullah S, Majid M, Rashid MI, Mehmood K, Andleeb S. Immunoinformatics driven prediction of multiepitopic vaccine against
Klebsiella pneumoniae and
Mycobacterium tuberculosis coinfection and its validation via
in silico expression. Int J Pept Res Ther 2021;27:987–999.
144. Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional signatures of human CD4 and CD8 T cell responses to
Mycobacterium tuberculosis. Front Immunol 2014;5:180.
146. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ,
et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998;282:121–125.
147. Serbina NV, Liu CC, Scanga CA, Flynn JL. CD8+ CTL from lungs of
Mycobacterium tuberculosis-infected mice express perforin
in vivo and lyse infected macrophages. J Immunol 2000;165:353–363.
148. Cho S, Mehra V, Thoma-Uszynski S, Stenger S, Serbina N, Mazzaccaro RJ,
et al. Antimicrobial activity of MHC class I-restricted CD8+ T cells in human tuberculosis. Proc Natl Acad Sci U S A 2000;97:12210–12215.
149. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol 2001;19:93–129.
150. North RJ. Importance of thymus-derived lymphocytes in cell-mediated immunity to infection. Cell Immunol 1973;7:166–176.
155. Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M,
et al.
Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 2013;43:1568–1577.
156. Brighenti S, Andersson J. Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 2012;205 Suppl 2:S316–324.
158. Nandi B, Behar SM. Regulation of neutrophils by interferon-gamma limits lung inflammation during tuberculosis infection. J Exp Med 2011;208:2251–2262.
160. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993;259:1739–1742.
161. Rao M, Valentini D, Poiret T, Dodoo E, Parida S, Zumla A,
et al. B in TB: B cells as mediators of clinically relevant immune responses in tuberculosis. Clin Infect Dis 2015;61Suppl 3:S225–S234.
162. Kringelum JV, Nielsen M, Padkjaer SB, Lund O. Structural analysis of B-cell epitopes in antibody:protein complexes. Mol Immunol 2013;53:24–34.
164. Li X, Yang X, Jiang Y, Liu J. A novel HBV DNA vaccine based on T cell epitopes and its potential therapeutic effect in HBV transgenic mice. Int Immunol 2005;17:1293–1302.
165. Li H, Ning P, Lin Z, Liang W, Kang K, He L,
et al. Co-expression of the C-terminal domain of
Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus. J Biosci 2015;40:79–90.
166. Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L,
et al. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2015;11:1209–1222.
167. Kallel H, Kamen AA. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials. Biotechnol J 2015;10:741–747.
168. Farnos O, Gelaye E, Trabelsi K, Bernier A, Subramani K, Kallel H,
et al. Establishing a Robust manufacturing platform for recombinant veterinary vaccines: an adenovirus-vector vaccine to control newcastle disease virus infections of poultry in sub-Saharan Africa. Vaccines (Basel) 2020;8:338.
169. Cai X, Bai H, Zhang X. Vaccines and advanced vaccines: a landscape for advanced vaccine technology against infectious disease, COVID-19 and tumor. Preprint at:
https://doi.org/10.31219/osf.io/ypgx4 (2020).
170. Milligan ID, Gibani MM, Sewell R, Clutterbuck EA, Campbell D, Plested E,
et al. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia Ankara-vectored Ebola vaccines: a randomized clinical trial. JAMA 2016;315:1610–1623.