4. Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZ,
et al. Rapid whole-genome sequencing of
Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 2015;53:2230–2237.
6. World Health Organization. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium tuberculosis Complex: Technical Guide. Geneva: World Health Organization, 2018.
8. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D,
et al. Deciphering the biology of
Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393:537–544.
9. Maladan Y, Krismawati H, Wahyuni T, Tanjung R, Awaludin K, Audah KA,
et al. The whole-genome sequencing in predicting
Mycobacterium tuberculosis drug susceptibility and resistance in Papua, Indonesia. BMC Genomics 2021;22:844.
11. Ruesen C, Riza AL, Florescu A, Chaidir L, Editoiu C, Aalders N,
et al. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in
Mycobacterium tuberculosis strains from Romania. Sci Rep 2018;8:9676.
12. Hazbon MH, Bobadilla del Valle M, Guerrero MI, Varma-Basil M, Filliol I, Cavatore M,
et al. Role of
embB codon 306 mutations in
Mycobacterium tuberculosis revisited: a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance. Antimicrob Agents Chemother 2005;49:3794–3802.
13. Bakula Z, Napiorkowska A, Bielecki J, Augustynowicz-Kopec E, Zwolska Z, Jagielski T. Mutations in the
embB gene and their association with ethambutol resistance in multidrug-resistant
Mycobacterium tuberculosis clinical isolates from Poland. Biomed Res Int 2013;2013:167954.
14. Li MC, Chen R, Lin SQ, Lu Y, Liu HC, Li GL,
et al. Detecting ethambutol resistance in
Mycobacterium tuberculosis isolates in China: a comparison between phenotypic drug susceptibility testing methods and DNA sequencing of embAB. Front Microbiol 2020;11:781.
15. Sekiguchi J, Miyoshi-Akiyama T, Augustynowicz-Kopec E, Zwolska Z, Kirikae F, Toyota E,
et al. Detection of multidrug resistance in
Mycobacterium tuberculosis. J Clin Microbiol 2007;45:179–192.
16. Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR Jr,
et al. Ethambutol resistance in
Mycobacterium tuberculosis: critical role of
embB mutations. Antimicrob Agents Chemother 1997;41:1677–1681.
17. Lee AS, Othman SN, Ho YM, Wong SY. Novel mutations within the
embB gene in ethambutol-susceptible clinical isolates of
Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004;48:4447–4449.
19. Alatawi EA, Alshabrmi FM. Structural and dynamic insights into the W68L, L85P, and T87A mutations of
Mycobacterium tuberculosis inducing resistance to pyrazinamide. Int J Environ Res Public Health 2022;19:1615.
20. Kumar V, Sobhia ME. Molecular dynamics assisted mechanistic study of isoniazid-resistance against
Mycobacterium tuberculosis InhA. PLoS One 2015;10:e0144635.
21. Schwengers O, Hoek A, Fritzenwanker M, Falgenhauer L, Hain T, Chakraborty T,
et al. ASA3P: an automatic and scalable pipeline for the assembly, annotation and higher-level analysis of closely related bacterial isolates. PLoS Comput Biol 2020;16:e1007134.
24. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT,
et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47:1739–1749.
25. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 2008;29:1859–1865.
26. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA,
et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 2016;12:405–413.
27. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL,
et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 2017;14:71–73.
28. Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B,
et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1-2:19–25.
29. Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G, Coll F,
et al. Whole genome sequencing based characterization of extensively drug-resistant
Mycobacterium tuberculosis isolates from Pakistan. PLoS One 2015;10:e0117771.
30. World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021.
31. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA,
et al. Evolution of extensively drug-resistant
Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 2014;15:490.
32. Mokrousov I, Otten T, Vyshnevskiy B, Narvskaya O. Detection of
embB306 mutations in ethambutol-susceptible clinical isolates of
Mycobacterium tuberculosis from Northwestern Russia: implications for genotypic resistance testing. J Clin Microbiol 2002;40:3810–3813.
33. Senghore M, Diarra B, Gehre F, Otu J, Worwui A, Muhammad AK,
et al. Evolution of
Mycobacterium tuberculosis complex lineages and their role in an emerging threat of multidrug resistant tuberculosis in Bamako, Mali. Sci Rep 2020;10:327.
35. Coscolla M, Gagneux S. Consequences of genomic diversity in
Mycobacterium tuberculosis. Semin Immunol 2014;26:431–444.
36. Kato-Maeda M, Shanley CA, Ackart D, Jarlsberg LG, Shang S, Obregon-Henao A,
et al. Beijing sublineages of
Mycobacterium tuberculosis differ in pathogenicity in the guinea pig. Clin Vaccine Immunol 2012;19:1227–1237.
37. Abdelhaleem A, Hershan A, Agarwal P, Farasani A, Omar SV, Ismail A,
et al. Whole-genome sequencing of a
Mycobacterium tuberculosis strain belonging to lineage 1 (Indo-Oceanic) and the East African Indian spoligotype, isolated in Jazan, Saudi Arabia. Microbiol Resour Announc 2020;9:e00717–20.