1. Wijnands LM, Dufrenne JB, Zwietering MH, van Leusden FM. Spores from mesophilic
Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int J Food Microbiol 2006;112:120–128.
2. Altayar M, Sutherland AD.
Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J Appl Microbiol 2006;100:7–14.
4. Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic
Bacillus cereus. Trends Food Sci Technol 2019;93:94–105.
5. Auger S, Galleron N, Bidnenko E, Ehrlich SD, Lapidus A, Sorokin A. The genetically remote pathogenic strain NVH391-98 of the
Bacillus cereus group is representative of a cluster of thermophilic strains. Appl Environ Microbiol 2008;74:1276–1280.
6. Kumari S, Sarkar PK.
Bacillus cereus hazard and control in industrial dairy processing environment. Food Control 2016;69:20–29.
7. Scheldeman P, Herman L, Foster S, Heyndrickx M.
Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J Appl Microbiol 2006;101:542–555.
8. Esteban MD, Huertas JP, Fernandez PS, Palop A. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of
Bacillus sporothermodurans IC4 spores. Food Microbiol 2013;34:158–163.
9. Caro-Astorga J, Frenzel E, Perkins JR, Alvarez-Mena A, de Vicente A, Ranea JA,
et al. Biofilm formation displays intrinsic offensive and defensive features of
Bacillus cereus. NPJ Biofilms Microbiomes 2020;6:3.
10. Ryu JH, Beuchat LR. Biofilm formation and sporulation by
Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J Food Prot 2005;68:2614–2622.
12. Liu Y, Ge W, Zhang J, Li X, Wu X, Li T,
et al. Detection of
Bacillus cereus sensu lato from environments associated with goat milk powdered infant formula production facilities. Int Dairy J 2018;83:10–16.
14. Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA, Stewart AC,
et al. Genomic characterization of the
Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res 2012;22:1512–1524.
15. Zhang Z, Yin L, Li X, Zhang C, Liu C, Wu Z. The complete genome sequence of
Bacillus halotolerans ZB201702 isolated from a drought- and salt-stressed rhizosphere soil. Microb Pathog 2018;123:246–249.
16. Owusu-Darko R, Allam M, Ismail A, Ferreira CAS, Oliveira SD, Buys EM. Comparative genome analysis of
Bacillus sporothermodurans with its closest phylogenetic neighbor, Bacillus oleronius, and
Bacillus cereus and
Bacillus subtilis groups. Microorganisms 2020;8:1185.
17. Zribi Zghal R, Ghedira K, Elleuch J, Kharrat M, Tounsi S. Genome sequence analysis of a novel
Bacillus thuringiensis strain BLB406 active against Aedes aegypti larvae, a novel potential bioinsecticide. Int J Biol Macromol 2018;116:1153–1162.
18. Sornchuer P, Saninjuk K, Prathaphan P, Tiengtip R, Wattanaphansak S. Antimicrobial susceptibility profile and whole-genome analysis of a strong biofilm-forming
Bacillus sp. B87 strain isolated from food. Microorganisms 2022;10:252.
19. Sornchuer P, Tiengtip R. Prevalence, virulence genes, and antimicrobial resistance of
Bacillus cereus isolated from foodstuffs in Pathum Thani Province, Thailand. Pharm Sci Asia 2021;48:194–203.
21. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute, 2010.
22. Gao T, Ding Y, Wu Q, Wang J, Zhang J, Yu S,
et al. Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of
Bacillus cereus isolated from pasteurized milk in China. Front Microbiol 2018;9:533.
25. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C,
et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2017;45:D535–D542.
28. Flint S, Gonzaga ZJ, Good J, Palmer J. Bacillus thermoamylovorans: a new threat to the dairy industry. A review. Int Dairy J 2017;65:38–43.
29. Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML,
et al. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the
Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol 2013;63:31–40.
31. Hecker M, Schumann W, Volker U. Heat-shock and general stress response in
Bacillus subtilis. Mol Microbiol 1996;19:417–428.
32. Liberek K, Georgopoulos C. Autoregulation of the
Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc Natl Acad Sci U S A 1993;90:11019–11023.
34. Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rudiger S, Schonfeld HJ,
et al. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the
Escherichia coli heat shock transcription factor sigma32. EMBO J 1996;15:607–617.
35. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998;92:351–366.
36. Glover JR, Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998;94:73–82.
38. Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the
Escherichia coli cytosol. Mol Microbiol 2001;40:397–413.
39. Gerth U, Kirstein J, Mostertz J, Waldminghaus T, Miethke M, Kock H,
et al. Fine-tuning in regulation of Clp protein content in
Bacillus subtilis. J Bacteriol 2004;186:179–191.