1. Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 1989;56:771–776.
2. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793–798.
3. Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 1999;99:735–745.
5. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260:273–279.
8. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in
Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570–2580.
10. Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O,
et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 2010;1:3.
11. Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED,
et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 2013;18:416–430.
12. Zhao L, Cao J, Hu K, He X, Yun D, Tong T,
et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis 2020;11:927–945.
15. Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 2007;72:483–488.
17. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS,
et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 2016;8:61.
19. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504.
20. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C,
et al. IntAct: open source resource for molecular interaction data. Nucleic Acids Res 2007;35:D561–D565.
21. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L,
et al. MINT: the Molecular INTeraction database. Nucleic Acids Res 2007;35:D572–D574.
23. Millan PP. Visualization and analysis of biological networks. Methods Mol Biol 2013;1021:63–88.
24. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res 2019;18:623–632.
25. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R,
et al. InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res 2013;41:D1228–D1233.
26. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T,
et al. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res 2018;46:D1083–D1090.
35. Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol 2007;21:1745–1755.
37. Pan M, Yuan H, Brent M, Ding EC, Marmorstein R. SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity. J Biol Chem 2012;287:2468–2476.
39. Yoon H, Shin SH, Shin DH, Chun YS, Park JW. Differential roles of Sirt1 in HIF-1alpha and HIF-2alpha mediated hypoxic responses. Biochem Biophys Res Commun 2014;444:36–43.
41. White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med 2014;46:S7–S15.
42. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323–331.
45. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S,
et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007;67:3043–3053.
47. Zhang Y, Wang X, Yang H, Liu H, Lu Y, Han L,
et al. Kinase AKT controls innate immune cell development and function. Immunology 2013;140:143–152.
48. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20:98–105.
51. Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol 2020;13:165.
52. Ruiz de Galarreta M, Bresnahan E, Molina-Sanchez P, Lindblad KE, Maier B, Sia D,
et al. Beta-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov 2019;9:1124–1141.
53. Jia L, Pina-Crespo J, Li Y. Restoring Wnt/beta-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019;12:104.