1. Hayakawa Y, Sethi N, Sepulveda AR, Bass AJ, Wang TC. Oesophageal adenocarcinoma and gastric cancer: should we mind the gap? Nat Rev 2016;16:305–318.
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M,
et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–E386.
4. Kurokawa Y, Matsuura N, Kawabata R, Nishikawa K, Ebisui C, Yokoyama Y,
et al. Prognostic impact of major receptor tyrosine kinase expression in gastric cancer. Ann Surg Oncol 2014;21 Suppl 4:S584–S590.
6. Melo FF, Batista SA,
et al.
STAT3 polymorphism and
Helicobacter pylori CagA strains with higher number of EPIYA-C segments independently increase the risk of gastric cancer. BMC Cancer 2015;15:528.
8. Chang S, Liu J, Guo S, He S, Qiu G, Lu J,
et al. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression. Oncol Rep 2016;35:3577–3585.
9. Zhang H, Ma RR, Wang XJ, Su ZX, Chen X, Shi DB,
et al. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer. Oncogene 2017;36:5609–5619.
10. Niu Q, Zhu J, Yu X, Feng T, Ji H, Li Y,
et al. Immune response in
H. pylori-associated gastritis and gastric cancer. Gastroenterol Res Pract 2020;2020:9342563.
11. Li Q, Yu H. The role of non-
H. pylori bacteria in the development of gastric cancer. Am J Cancer Res 2020;10:2271–2281.
12. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA,
et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000;404:398–402.
13. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R,
et al.
Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst 2002;94:1680–1687.
14. El-Omar EM, Rabkin CS, Gammon MD, Vaughan TL, Risch HA, Schoenberg JB,
et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 2003;124:1193–1201.
15. Machado JC, Figueiredo C, Canedo P, Pharoah P, Carvalho R, Nabais S,
et al. A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology 2003;125:364–371.
16. Rocha GA, Guerra JB, Rocha AM, Saraiva IE, da Silva DA, de Oliveira CA,
et al.
IL1RN polymorphic gene and cagA-positive status independently increase the risk of noncardia gastric carcinoma. Int J Cancer 2005;115:678–683.
17. Gobert AP, Wilson KT. Polyamine- and NADPH-dependent generation of ROS during
Helicobacter pylori infection: a blessing in disguise. Free Radic Biol Med 2017;105:16–27.
18. Peterson AJ, Menheniott TR, O'Connor L, Walduck AK, Fox JG, Kawakami K,
et al.
Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 2010;139:2005–2017.
19. Cheng AS, Li MS, Kang W, Cheng VY, Chou JL, Lau SS,
et al.
Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 2013;144:122–133.
20. den Hartog G, Chattopadhyay R, Ablack A, Hall EH, Butcher LD, Bhattacharyya A,
et al. Regulation of Rac1 and reactive oxygen species production in response to infection of gastrointestinal epithelia. PLoS Pathog 2016;12:e1005382.
24. Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L,
et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 2014;5:2276–2292.
25. Han M, Ma L, Qu Y, Tang Y. Decreased expression of the ATM gene linked to poor prognosis for gastric cancer of different nationalities in Xinjiang. Pathol Res Pract 2017;213:908–914.
26. Villanueva MT. Therapeutics: gastric cancer gets a red carpet treatment. Nat Rev Cancer 2014;14:648.
27. Hu L, Bai ZG, Ma XM, Bai N, Zhang ZT. MRFAP1 plays a protective role in neddylation inhibitor MLN4924-mediated gastric cancer cell death. Eur Rev Med Pharmacol Sci 2018;22:8273–8280.
28. Wu Y, Yun D, Zhao Y, Wang Y, Sun R, Yan Q,
et al. Down regulation of RNA binding motif, single-stranded interacting protein 3, along with up regulation of nuclear HIF1A correlates with poor prognosis in patients with gastric cancer. Oncotarget 2017;8:1262–1277.
29. Yan M, Parker BA, Schwab R, Kurzrock R. HER2 aberrations in cancer: implications for therapy. Cancer Treat Rev 2014;40:770–780.
30. Naruke A, Azuma M, Takeuchi A, Ishido K, Katada C, Sasaki T,
et al. Comparison of site-specific gene expression levels in primary tumors and synchronous lymph node metastases in advanced gastric cancer. Gastric Cancer 2015;18:262–270.
31. Jiang L, Chen Y, Sang J, Li Y, Lan T, Wang Y,
et al. Type II cGMP-dependent protein kinase inhibits activation of key members of the RTK family in gastric cancer cells. Biomed Rep 2013;1:399–404.
32. Nagatsuma AK, Aizawa M, Kuwata T, Doi T, Ohtsu A, Fujii H,
et al. Expression profiles of HER2, EGFR, MET and FGFR2 in a large cohort of patients with gastric adenocarcinoma. Gastric Cancer 2015;18:227–238.
36. Rivera C, Oliveira AK, Costa RAP, De Rossi T, Paes Leme AF. Prognostic biomarkers in oral squamous cell carcinoma: a systematic review. Oral Oncol 2017;72:38–47.
38. Santini D, Vincenzi B, Fratto ME, Perrone G, Lai R, Catalano V,
et al. Prognostic role of human equilibrative transporter 1 (hENT1) in patients with resected gastric cancer. J Cell Physiol 2010;223:384–388.
39. Ooki A, Yamashita K, Kikuchi S, Sakuramoto S, Katada N, Watanabe M. Phosphatase of regenerating liver-3 as a prognostic biomarker in histologically node-negative gastric cancer. Oncol Rep 2009;21:1467–1475.
41. Kim YJ, Kim MA, Im SA, Kim TM, Kim DW, Yang HK,
et al. Metastasis-associated protein S100A4 and p53 predict relapse in curatively resected stage III and IV (M0) gastric cancer. Cancer Invest 2008;26:152–158.
42. Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R,
et al. Circulating microRNAs in cancer: potential and challenge. Front Genet 2019;10:626.
50. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018;9:402.
53. Erler P, Keutgen XM, Crowley MJ, Zetoune T, Kundel A, Kleiman D,
et al. Dicer expression and microRNA dysregulation associate with aggressive features in thyroid cancer. Surgery 2014;156:1342–1350.
55. Huang Y, Liao D, Pan L, Ye R, Li X, Wang S,
et al. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the
BRAFV600E mutation. Eur J Endocrinol 2013;168:675–681.
56. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S,
et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010;11:136–146.
58. Yang Q, Tian GL, Qin JW, Wu BQ, Tan L, Xu L,
et al. Coupling bootstrap with synergy self-organizing map-based orthogonal partial least squares discriminant analysis: stable metabolic biomarker selection for inherited metabolic diseases. Talanta 2020;219:121370.
59. Draghici S, Khatri P, Eklund AC, Szallasi Z. Reliability and reproducibility issues in DNA microarray measurements. Trends Genet 2006;22:101–109.
61. Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, Bradford BU,
et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2005;2:351–356.
62. Taherkhani A, Moradkhani S, Orangi A, Jalalvand A, Khamverdi Z. Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition. J Basic Clin Physiol Pharmacol 2020;32:1105–1119.
66. Mraz M, Malinova K, Mayer J, Pospisilova S. MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 2009;390:1–4.
67. Bayat Z, Farhadi Z, Taherkhani A. Identification of potential biomarkers associated with poor prognosis in oral squamous cell carcinoma through integrated bioinformatics analysis: a pilot study. Gene Rep 2021;24:101243.
69. Chang H, Kim N, Park JH, Nam RH, Choi YJ, Lee HS,
et al. Different microRNA expression levels in gastric cancer depending on
Helicobacter pylori infection. Gut Liver 2015;9:188–196.
70. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,
et al. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res 2013;41:D991–D995.
72. Wang Y, Wang YS, Hu NB, Teng GS, Zhou Y, Bai J. Bioinformatics analysis of core genes and key pathways in myelodysplastic syndrome. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2022;30:804–812.
77. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504.
79. Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L,
et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011;39:D691–D697.
85. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A,
et al. Proteomics: tissue-based map of the human proteome. Science 2015;347:1260419.
86. Parizadeh SM, Jafarzadeh-Esfehani R, Avan A, Ghandehari M, Goldani F, Parizadeh SM. The prognostic and predictive value of microRNAs in patients with
H. pylori-positive gastric cancer. Curr Pharm Design 2018;24:4639–4645.
88. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001;70:503–533.
89. Dye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 2007;36:131–150.
91. Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M,
et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest 2014;124:564–579.
92. Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X,
et al. CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut 2013;62:496–508.
94. Qiu D, Wang Q, Wang Z, Chen J, Yan D, Zhou Y,
et al. RNF185 modulates JWA ubiquitination and promotes gastric cancer metastasis. Biochim Biophys Acta Mol Basis Dis 2018;1864:1552–1561.
95. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S,
et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009;458:732–736.
96. Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009;78:399–434.
98. Zhao Y, Sun Y. Cullin-RING ligases as attractive anti-cancer targets. Curr Pharm Design 2013;19:3215–3225.
101. Li H, Tan M, Jia L, Wei D, Zhao Y, Chen G,
et al. Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis. J Clin Invest 2014;124:835–846.
106. Li L, Wang M, Yu G, Chen P, Li H, Wei D,
et al. Overactivated neddylation pathway as a therapeutic target in lung cancer. J Natl Cancer Inst 2014;106:dju083.
107. Nawrocki ST, Griffin P, Kelly KR, Carew JS. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs 2012;21:1563–1573.
108. Swords RT, Erba HP, DeAngelo DJ, Bixby DL, Altman JK, Maris M,
et al. Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol 2015;169:534–543.
110. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P,
et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007;448:807–810.
112. Schraml P, Frew IJ, Thoma CR, Boysen G, Struckmann K, Krek W,
et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod Pathol 2009;22:31–36.
113. Reilova-Velez J, Seiler MW. Abnormal cilia in a breast carcinoma: an ultrastructural study. Arch Pathol Lab Med 1984;108:795–797.
116. Jansen S, Gosens R, Wieland T, Schmidt M. Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharmacol Ther 2018;183:1–21.
117. Zhang H, Nie W, Zhang X, Zhang G, Li Z, Wu H,
et al. NEDD4-1 regulates migration and invasion of glioma cells through CNrasGEF ubiquitination
in vitro. PLoS One 2013;8:e82789.
118. Yan D, Li F, Hall ML, Sage C, Hu WH, Giallourakis C,
et al. An isoform of GTPase regulator DOCK4 localizes to the stereocilia in the inner ear and binds to harmonin (USH1C). J Mol Biol 2006;357:755–764.
120. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017;45:D158–D169.
123. Li H, Wang M, Zhou H, Lu S, Zhang B. Long noncoding RNA EBLN3P promotes the progression of liver cancer via alteration of microRNA-144-3p/DOCK4 signal. Cancer Manag Res 2020;12:9339–9349.
125. Ueyama H, Yao T, Nakashima Y, Hirakawa K, Oshiro Y, Hirahashi M,
et al. Gastric adenocarcinoma of fundic gland type (chief cell predominant type): proposal for a new entity of gastric adenocarcinoma. Am J Surg Pathol 2010;34:609–619.
126. Ikuta K, Seno H, Chiba T. Molecular changes leading to gastric cancer: a suggestion from rare-type gastric tumors with
GNAS mutations. Gastroenterology 2014;146:1417–1418.
128. Matsubara A, Sekine S, Kushima R, Ogawa R, Taniguchi H, Tsuda H,
et al. Frequent
GNAS and
KRAS mutations in pyloric gland adenoma of the stomach and duodenum. J Pathol 2013;229:579–587.
129. Liu L, Li Z, Feng G, You W, Li J. Expression of connective tissue growth factor is in agreement with the expression of VEGF, VEGF-C, -D and associated with shorter survival in gastric cancer. Pathol Int 2007;57:712–718.
132. Li J, Gao X, Ji K, Sanders AJ, Zhang Z, Jiang WG,
et al. Differential expression of CCN family members CYR611, CTGF and NOV in gastric cancer and their association with disease progression. Oncol Rep 2016;36:2517–2525.
133. Guo W, Dong Z, Guo Y, Chen Z, Yang Z, Kuang G,
et al. Polymorphisms of transforming growth factor-beta1 associated with increased risk of gastric cardia adenocarcinoma in north China. Int J Immunogenet 2011;38:215–224.
134. Bhayal AC, Prabhakar B, Rao KP, Penchikala A, Ayesha Q, Jyothy A,
et al. Role of transforming growth factor-beta1 -509 C/T promoter polymorphism in gastric cancer in south Indian population. Tumour Biol 2011;32:1049–1053.
135. Lin XD, Li C, Shi Y, Chen Y, Zhang LY, Zheng XW. Correlation of polymorphism of Nme1-1465 T>C and TGFbeta1-509 T>C with genetic susceptibility of gastric carcinoma. Zhonghua Bing Li Xue Za Zhi 2010;39:681–685.
136. Zhang P, Di JZ, Zhu ZZ, Wu HM, Wang Y, Zhu G,
et al. Association of transforming growth factor-beta 1 polymorphisms with genetic susceptibility to TNM stage I or II gastric cancer. Jpn J Clin Oncol 2008;38:861–866.
138. Messa C, Di Leo A, Greco B, Caradonna L, Amati L, Linsalata M,
et al. Successful eradicating treatment of
Helicobacter pylori in patients with chronic gastritis: gastric levels of cytokines, epidermal growth factor and polyamines before and after therapy. Immunopharmacol Immunotoxicol 1996;18:1–13.
139. Jayapal M, Melendez AJ. DNA microarray technology for target identification and validation. Clin Exp Pharmacol Physiol 2006;33:496–503.
140. Leask A, Holmes A, Black CM, Abraham DJ. Connective tissue growth factor gene regulation: requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem 2003;278:13008–13015.
141. Ball DK, Moussad EE, Rageh MA, Kemper SA, Brigstock DR. Establishment of a recombinant expression system for connective tissue growth factor (CTGF) that models CTGF processing in utero. Reproduction 2003;125:271–284.
142. Rio MC, Bellocq JP, Daniel JY, Tomasetto C, Lathe R, Chenard MP,
et al. Breast cancer-associated pS2 protein: synthesis and secretion by normal stomach mucosa. Science 1988;241:705–708.
143. Soutto M, Peng D, Katsha A, Chen Z, Piazuelo MB, Washington MK,
et al. Activation of beta-catenin signalling by TFF1 loss promotes cell proliferation and gastric tumorigenesis. Gut 2015;64:1028–1039.
144. Soutto M, Belkhiri A, Piazuelo MB, Schneider BG, Peng D, Jiang A,
et al. Loss of TFF1 is associated with activation of NF-kappaB-mediated inflammation and gastric neoplasia in mice and humans. J Clin Invest 2011;121:1753–1767.
145. Carvalho R, Kayademir T, Soares P, Canedo P, Sousa S, Oliveira C,
et al. Loss of heterozygosity and promoter methylation, but not mutation, may underlie loss of TFF1 in gastric carcinoma. Lab Invest 2002;82:1319–1326.
146. Tomita H, Takaishi S, Menheniott TR, Yang X, Shibata W, Jin G,
et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology 2011;140:879–891.
147. McChesney PA, Aiyar SE, Lee OJ, Zaika A, Moskaluk C, Li R,
et al. Cofactor of BRCA1: a novel transcription factor regulator in upper gastrointestinal adenocarcinomas. Cancer Res 2006;66:1346–1353.
148. Zhou L, Wu Y, Xin L, Zhou Q, Li S, Yuan Y,
et al. Development of RNA binding proteins expression signature for prognosis prediction in gastric cancer patients. Am J Transl Res 2020;12:6775–6792.
149. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W,
et al. A reference map of the human binary protein interactome. Nature 2020;580:402–408.
150. Liarmakopoulos E, Gazouli M, Aravantinos G, Theodoropoulos G, Rizos S, Vaiopoulou A,
et al. E-Selectin S128R gene polymorphism in gastric cancer. Int J Biol Markers 2013;28:38–42.
151. Xia HZ, Du WD, Wu Q, Chen G, Zhou Y, Tang XF,
et al. E-selectin rs5361 and FCGR2A rs1801274 variants were associated with increased risk of gastric cancer in a Chinese population. Mol Carcinog 2012;51:597–607.
152. Alexiou D, Karayiannakis AJ, Syrigos KN, Zbar A, Sekara E, Michail P,
et al. Clinical significance of serum levels of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in gastric cancer patients. Am J Gastroenterol 2003;98:478–485.
153. Yoo NC, Chung HC, Chung HC, Park JO, Rha SY, Kim JH,
et al. Synchronous elevation of soluble intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) correlates with gastric cancer progression. Yonsei Med J 1998;39:27–36.
154. Ke JJ, Shao QS, Ling ZQ. Expression of E-selectin, integrin beta1 and immunoglobulin superfamily member in human gastric carcinoma cells and its clinicopathologic significance. World J Gastroenterol 2006;12:3609–3611.
155. Maruo Y, Gochi A, Kaihara A, Shimamura H, Yamada T, Tanaka N,
et al. ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int J Cancer 2002;100:486–490.
156. Li YH, Shao JY, Li S, Zou BY, Huang HQ, Guan ZZ. Clinical significance of quantitative analysis of serum VEGF, CD44s, and MMP-3 protein in nasopharyngeal carcinoma. Ai Zheng 2004;23:1060–1064.
157. Arguello-Ramirez J, Perez-Cardenas E, Delgado-Chavez R, Solorza-Luna G, Villa-Trevino S, Arenas-Huertero F. Matrix metalloproteinases-2, -3, and -9 secreted by explants of benign and malignant lesions of the uterine cervix. Int J Gynecol Cancer 2004;14:333–340.
159. Mino N, Takenaka K, Sonobe M, Miyahara R, Yanagihara K, Otake Y,
et al. Expression of tissue inhibitor of metalloproteinase-3 (TIMP-3) and its prognostic significance in resected non-small cell lung cancer. J Surg Oncol 2007;95:250–257.
160. Islekel H, Oktay G, Terzi C, Canda AE, Fuzun M, Kupelioglu A. Matrix metalloproteinase-9,-3 and tissue inhibitor of matrix metalloproteinase-1 in colorectal cancer: relationship to clinicopathological variables. Cell Biochem Funct 2007;25:433–441.
161. Liu H, Zhao YR, Chen B, Ge Z, Huang JS. High expression of SMARCE1 predicts poor prognosis and promotes cell growth and metastasis in gastric cancer. Cancer Manag Res 2019;11:3493–3509.
162. Welsh SJ, Bellamy WT, Briehl MM, Powis G. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 2002;62:5089–5095.
163. Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G,
et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2005;102:673–678.
164. Kim SJ, Miyoshi Y, Taguchi T, Tamaki Y, Nakamura H, Yodoi J,
et al. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin Cancer Res 2005;11:8425–8430.
165. Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD,
et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 2000;164:6287–6295.
166. Nishinaka Y, Nishiyama A, Masutani H, Oka S, Ahsan KM, Nakayama Y,
et al. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: implications for adult T-cell leukemia leukemogenesis. Cancer Res 2004;64:1287–1292.
167. Kwon HJ, Won YS, Nam KT, Yoon YD, Jee H, Yoon WK,
et al. Vitamin D(3) upregulated protein 1 deficiency promotes N-methyl-N-nitrosourea and
Helicobacter pylori-induced gastric carcinogenesis in mice. Gut 2012;61:53–63.