1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F,
et al. Dental caries. Nat Rev Dis Primers 2017;3:17030.
2. Goodson JM, Shi P, Mumena CH, Haq A, Razzaque MS. Dietary phosphorus burden increases cariogenesis independent of vitamin D uptake. J Steroid Biochem Mol Biol 2017;167:33–38.
4. Queiroz AM, Bonilla CM, Palma-Dibb RG, Oliveira HF, Nelson-Filho P, Silva LA,
et al. Radiotherapy activates and protease inhibitors inactivate matrix metalloproteinases in the dentinoenamel junction of Permanent Teeth. Caries Res 2019;53:253–259.
5. Shimizu T, Ho B, Deeley K, Briseno-Ruiz J, Faraco IM Jr, Schupack BI,
et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS One 2012;7:e45022.
6. Tannure PN, Kuchler EC, Falagan-Lotsch P, Amorim LM, Raggio Luiz R, Costa MC,
et al. MMP13 polymorphism decreases risk for dental caries. Caries Res 2012;46:401–407.
7. Antunes LA, Antunes LS, Kuchler EC, Lopes LB, Moura A, Bigonha RS,
et al. Analysis of the association between polymorphisms in MMP2, MMP3, MMP9, MMP20, TIMP1, and TIMP2 genes with white spot lesions and early childhood caries. Int J Paediatr Dent 2016;26:310–319.
8. Fanchon S, Bourd K, Septier D, Everts V, Beertsen W, Menashi S,
et al. Involvement of matrix metalloproteinases in the onset of dentin mineralization. Eur J Oral Sci 2004;112:171–176.
10. Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: a minireview. Eur J Med Chem 2020;194:112260.
11. Taherkhani A, Moradkhani S, Orangi A, Jalalvand A, Khamverdi Z. Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition. J Basic Clin Physiol Pharmacol 2020;32:1105–1119.
12. Gupta P, Rettiganti M, Jeffries HE, Scanlon MC, Ghanayem NS, Daufeldt J,
et al. Risk factors and outcomes of in-hospital cardiac arrest following pediatric heart operations of varying complexity. Resuscitation 2016;105:1–7.
13. Scannevin RH, Alexander R, Haarlander TM, Burke SL, Singer M, Huo C,
et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J Biol Chem 2017;292:17963–17974.
14. Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: a minireview. Eur J Med Chem 2020;194:112260.
16. Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 2016;31:177–183.
17. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 2011;278:16–27.
19. Aalinkeel R, Nair BB, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC,
et al. Overexpression of MMP-9 contributes to invasiveness of prostate cancer cell line LNCaP. Immunol Invest 2011;40:447–464.
21. Chandra S, Roy A, Jana M, Pahan K. Cinnamic acid activates PPARalpha to stimulate lysosomal biogenesis and lower amyloid plaque pathology in an Alzheimer's disease mouse model. Neurobiol Dis 2019;124:379–395.
23. De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents: a review. Curr Med Chem 2011;18:1672–1703.
24. Zolfaghari B, Yazdiniapour Z, Sadeghi M, Akbari M, Troiano R, Lanzotti V. Cinnamic acid derivatives from welsh onion (
Allium fistulosum) and their antibacterial and cytotoxic activities. Phytochem Anal 2021;32:84–90.
28. Mancilla-Montelongo G, Castaneda-Ramirez GS, Torres-Acosta JFJ, Sandoval-Castro CA, Borges-Argaez R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet Parasitol 2019;270:25–30.
29. Malheiro JF, Maillard JY, Borges F, Simoes M. Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control. Int Biodeterior Biodegrad 2019;141:71–78.
30. Sadeghi S, Davoodvandi A, Pourhanifeh MH, Sharifi N, ArefNezhad R, Sahebnasagh R,
et al. Anti-cancer effects of cinnamon: insights into its apoptosis effects. Eur J Med Chem 2019;178:131–140.
31. Ge YX, Wang YH, Zhang J, Yu ZP, Mu X, Song JL,
et al. New cinnamic acid-pregenolone hybrids as potential antiproliferative agents: design, synthesis and biological evaluation. Steroids 2019;152:108499.
32. Nuti E, Cuffaro D, D'Andrea F, Rosalia L, Tepshi L, Fabbi M,
et al. Sugar-based arylsulfonamide carboxylates as selective and water-soluble matrix metalloproteinase-12 inhibitors. ChemMedChem 2016;11:1626–1637.
33. Rose PW, Prlic A, Altunkaya A, Bi C, Bradley AR, Christie CH,
et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 2017;45:D271–D281.
34. Taherkhani A, Orangi A, Moradkhani S, Jalalvand A, Khamverdi Z. Identification of potential anti-tooth-decay compounds from organic cinnamic acid derivatives by inhibiting matrix metalloproteinase-8: an in silico study. Avicenna J Dent Res 2022;14:25–32.
35. Taherkhani A, Ghonji F, Mazaheri A, Lohrasbi MP, Mohamadi Z, Khamverdi Z. Identification of potential glucosyltransferase inhibitors from cinnamic acid derivatives using molecular docking analysis: a bioinformatics study. Avicenna J Clin Microbiol 2021;8:145–155.
36. Crasci L, Basile L, Panico A, Puglia C, Bonina FP, Basile PM,
et al. Correlating
in vitro target-oriented screening and docking: inhibition of matrix metalloproteinases activities by flavonoids. Planta Med 2017;83:901–911.
37. Jayaraj JM, Reteti E, Kesavan C, Muthusamy K. Structural insights on vitamin D receptor and screening of new potent agonist molecules: structure and ligand-based approach. J Biomol Struct Dyn 2021;39:4148–4159.
38. Khan S, Bhardwaj T, Somvanshi P, Mandal RK, Dar SA, Jawed A,
et al. Inhibition of C298S mutant of human aldose reductase for antidiabetic applications: evidence from
in silico elementary mode analysis of biological network model. J Cell Biochem 2018;119:6961–6973.
39. Tasleem M, Ishrat R, Islam A, Ahmad F, Hassan MI. Structural characterization, homology modeling and docking studies of ARG674 mutation in MyH8 gene associated with trismus-pseudocamptodactyly syndrome. Lett Drug Design Discov 2014;11:1177–1187.
40. Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 2008;8:1555–1572.
42. Moradkhani S, Farmani A, Saidijam M, Taherkhani A. COVID-19: docking-based virtual screening and molecular dynamics study to identify potential SARS-CoV-2 spike protein inhibitors from plant-based phenolic compounds. Acta Virol 2021;65:288–302.
43. Taherkhani A, Orangi A, Moradkhani S, Khamverdi Z. Molecular docking analysis of flavonoid compounds with matrix metalloproteinase-8 for the identification of potential effective inhibitors. Lett Drug Design Discov 2021;18:16–45.
45. El-Mesallamy AM, Abdel-Hamid N, Srour L, Hussein SA. Identification of polyphenolic compounds and hepatoprotective activity of artichoke (Cynara scolymus L.) edible part extracts in rats. Egypt J Chem 2020;63:2273–2285.
46. McGrowder DA, Miller FG, Nwokocha CR, Anderson MS, Wilson-Clarke C, Vaz K,
et al. Medicinal herbs used in traditional management of breast cancer: mechanisms of action. Medicines (Basel) 2020;7:47.
47. Heidarian E, Rafieian-Kopaei M. Protective effect of artichoke (
Cynara scolymus) leaf extract against lead toxicity in rat. Pharm Biol 2013;51:1104–1109.
48. Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M,
et al. Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 2018;97:67–74.
49. Antonio AG, Moraes RS, Perrone D, Maia LC, Santos KR, Iorio NL,
et al. Species, roasting degree and decaffeination influence the antibacterial activity of coffee against
Streptococcus mutans. Food Chem 2010;118:782–788.
50. Antonio AG, Iorio NL, Pierro VS, Candreva MS, Farah A, dos Santos KR,
et al. Inhibitory properties of
Coffea canephora extract against oral bacteria and its effect on demineralisation of deciduous teeth. Arch Oral Biol 2011;56:556–564.
51. Ferrazzano GF, Amato I, Ingenito A, De Natale A, Pollio A. Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia 2009;80:255–262.
52. Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by AMPK activation. Biochem Pharmacol 2013;85:1341–1351.
53. Park JJ, Hwang SJ, Park JH, Lee HJ. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1alpha/AKT pathway. Cell Oncol (Dordr) 2015;38:111–118.
55. Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry 2003;62:121–125.
56. Radziejewska I, Supruniuk K, Nazaruk J, Karna E, Poplawska B, Bielawska A,
et al. Rosmarinic acid influences collagen, MMPs, TIMPs, glycosylation and MUC1 in CRL-1739 gastric cancer cell line. Biomed Pharmacother 2018;107:397–407.
58. An Y, Zhao J, Zhang Y, Wu W, Hu J, Hao H,
et al. Rosmarinic acid induces proliferation suppression of hepatoma cells associated with NF-kappaB signaling pathway. Asian Pac J Cancer Prev 2021;22:1623–1632.
59. Tanzadehpanah H, Mahaki H, Moghadam NH, Salehzadeh S, Rajabi O, Najafi R,
et al. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J Biomol Struct Dyn 2019;37:823–836.
60. Mohseni-Shahri FS, Housaindokht MR, Bozorgmehr MR, Moosavi-Movahedi AA. Influence of taxifolin on the human serum albumin-propranolol interaction: multiple spectroscopic and chemometrics investigations and molecular dynamics simulation. J Solution Chem 2016;45:265–285.
61. Li Y, Wang Q, He J, Yan J, Li H. Fluorescence spectroscopy and docking study in two flavonoids, isolated tectoridin and its aglycone tectorigenin, interacting with human serum albumin: a comparison study. Luminescence 2016;31:38–46.