1. Centers for Disease Control and Prevention. 2019 Antibiotic Resistance Threats Report: Neisseria gonorrhoeae. Atlanta: Centers for Disease Control and Prevention, 2019.
2. Unemo M, del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. In: Emerging Infections 10 (Scheld WM, Hughes JM, Whitley RJ, eds.). Washington, DC: American Society for Microbiology, 2016. pp. 213–237.
3. Rice PA, Shafer WM, Ram S, Jerse AE.
Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol 2017;71:665–686.
7. Barh D, Kumar A.
In silico identification of candidate drug and vaccine targets from various pathways in
Neisseria gonorrhoeae. In Silico Biol 2009;9:225–231.
8. Barh D, Jain N, Tiwari S, Parida BP, D'Afonseca V, Li L,
et al. A novel comparative genomics analysis for common drug and vaccine targets in
Corynebacterium pseudotuberculosis and other CMN group of human pathogens. Chem Biol Drug Des 2011;78:73–84.
9. Khan MT, Mahmud A, Iqbal A, Hoque SF, Hasan M. Subtractive genomics approach towards the identification of novel therapeutic targets against human
Bartonella bacilliformis. Inform Med Unlocked 2020;20:100385.
10. Omeershffudin UN, Kumar S.
In silico approach for mining of potential drug targets from hypothetical proteins of bacterial proteome. Int J Mol Biol Open Access 2019;4:145–152.
11. Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen
Mycobacterium abscessus: a novel hierarchical
in silico approach. PLoS One 2013;8:e59126.
13. Barh D, Tiwari S, Jain N, Ali A, Santos AR, Misra AN,
et al.
In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev Res 2018;72:162–177.
14. Madabhavi PJ, Shanmuga Priya VG, Rakesh NR, Honagudi PS, Jiddagi S. Subtractive genomics: a promising way to combat pathogens (a review). Int Res J Eng Technol 2015;2:1800–1803.
15. Georrge JJ, Umrania VV. Subtractive genomics approach to identify putative drug targets and identification of drug-like molecules for beta subunit of DNA polymerase III in
Streptococcus species. Appl Biochem Biotechnol 2012;167:1377–1395.
18. Uddin R, Saeed K. Identification and characterization of potential drug targets by subtractive genome analyses of methicillin resistant
Staphylococcus aureus. Comput Biol Chem 2014;48:55–63.
19. Sarangi AN, Aggarwal R, Rahman Q, Trivedi N. Subtractive genomics approach for in silico identification and characterization of novel drug targets in Neisseria meningitides serogroup B. J Comput Sci Syst Biol 2009;2:255–258.
20. Ortiz AM, Santander PE, Lugo PJ.
Neisseria gonorrhoeae: a wayward pathogen. Microbiological concepts, antimicrobial resistance and its epidemiological surveillance in Chile. Rev Chilena Infectol 2021;38:512–522.
21. Rahman N, Muhammad I, Nayab GE, Khan H, Filosa R, Xiao J,
et al.
In-silico subtractive proteomic analysis approach for therapeutic targets in MDR
Salmonella enterica subsp. enterica serovar Typhi str. CT18. Curr Top Med Chem 2019;19:2708–2717.
23. Sharma A, Pan A. Identification of potential drug targets in
Yersinia pestis using metabolic pathway analysis: MurE ligase as a case study. Eur J Med Chem 2012;57:185–195.
24. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y,
et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005;33:D325–D328.
25. The UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017;45:D158–D169.
26. Sharma OP, Kumar MS. Essential proteins and possible therapeutic targets of
Wolbachia endosymbiont and development of FiloBase: a comprehensive drug target database for
Lymphatic filariasis. Sci Rep 2016;6:19842.
27. Pearson WR. Effective protein sequence comparison. Methods Enzymol 1996;266:227–258.
29. Collins JF, Coulson AF, Lyall A. The significance of protein sequence similarities. Comput Appl Biosci 1988;4:67–71.
30. Recanatini M, Bottegoni G, Cavalli A.
In silico antitarget screening. Drug Discov Today Technol 2004;1:209–215.
32. Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res 2015;43:D645–D655.
33. Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB 2. 0: a curated database for host-pathogen interactions. Database (Oxford) 2016;2016:baw103.
34. Durmus Tekir S, Cakir T, Ardic E, Sayilirbas AS, Konuk G, Konuk M,
et al. PHISTO: pathogen-host interaction search tool. Bioinformatics 2013;29:1357–1358.
35. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016;44:D457–D462.
38. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol 2000;3:445–450.
39. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D,
et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008;36:D901–D906.
42. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571–608.
43. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004;340:783–795.
44. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–580.
47. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE,
et al. The Pfam protein families database. Nucleic Acids Res 2010;38:D211–D222.
48. Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M,
et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 2002;3:265–274.
49. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R,
et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32:D258–D261.
50. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer EL,
et al. Pfam: the protein families database in 2021. Nucleic Acids Res 2021;49:D412–D419.
51. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A,
et al. New and continuing developments at PROSITE. Nucleic Acids Res 2013;41:D344–D347.
52. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T,
et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014;42:W252–W258.
54. Laskowski RA, McArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993;26:283–291.
56. Tanwer P, Kolora SR, Babbar A, Saluja D, Chaudhry U. Identification of potential therapeutic targets in
Neisseria gonorrhoeae by an
in-silico approach. J Theor Biol 2020;490:110172.
57. Yang L, Tan J, O'Brien EJ, Monk JM, Kim D, Li HJ,
et al. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proc Natl Acad Sci U S A 2015;112:10810–10815.
66. Hossain T, Kamruzzaman M, Choudhury TZ, Mahmood HN, Nabi A, Hosen MI. Application of the subtractive genomics and molecular docking analysis for the identification of novel putative drug targets against
Salmonella enterica subsp.
enterica serovar Poona. Biomed Res Int 2017;2017:3783714.
67. Folador EL, Tiwari S, Da Paz Barbosa CE, Jamal SB, Da Costa Schulze M, Barh D, et al. Protein-protein interactions: an overview. In: Encyclopedia of Bioinformatics and Computational Biology (Ranganathan S, Gribskov M, Nakai K, Schonbach C, eds.). Amsterdam: Elsevier, 2018. pp. 821–833.
68. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010;38:D355–D360.
69. Anishetty S, Pulimi M, Pennathur G. Potential drug targets in
Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem 2005;29:368–378.
71. Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T, Tahir SH,
et al. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem 2000;275:11002–11009.
72. Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 2002;26:17–47.
73. Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 2003;338:2503–2519.
74. Liu HW, Thorson JS. Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol 1994;48:223–256.
76. Johnson MD, Echlin H, Dao TH, Rosch JW. Characterization of NAD salvage pathways and their role in virulence in
Streptococcus pneumoniae. Microbiology (Reading) 2015;161:2127–2136.
77. Mortenson LE, Valentine RC, Carnahan JE. Ferredoxin in the phosphoroclastic reaction of pyruvic acid and its relation to nitrogen fixation in
Clostridium pasteurianum. J Biol Chem 1963;238:794–800.
78. Meyer J, Bruschi MH, Bonicel JJ, Bovier-Lapierre GE. Amino acid sequence of [2Fe-2S] ferredoxin from
Clostridium pasteurianum. Biochemistry 1986;25:6054–6061.
79. Bruschi M, Guerlesquin F. Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 1988;4:155–175.
80. Miller HK, Auerbuch V. Bacterial iron-sulfur cluster sensors in mammalian pathogens. Metallomics 2015;7:943–956.
82. Catalano-Dupuy DL, Lopez-Rivero A, Soldano A, Ceccarelli EA. Redox proteins as targets for drugs development against pathogens. Curr Pharm Des 2013;19:2594–2605.
84. Hopper AC. The electron transfer chains of Neisseria gonorrhoeae [dissertation]. Birmingham: University of Birmingham, 2011.
85. Berg JM. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem 1990;265:6513–6516.
86. Lim KH, Jones CE, vanden Hoven RN, Edwards JL, Falsetta ML, Apicella MA,
et al. Metal binding specificity of the MntABC permease of
Neisseria gonorrhoeae and its influence on bacterial growth and interaction with cervical epithelial cells. Infect Immun 2008;76:3569–3576.
89. Burnett JC, Ruthel G, Stegmann CM, Panchal RG, Nguyen TL, Hermone AR,
et al. Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. J Biol Chem 2007;282:5004–5014.
90. Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012;51:4024–4045.
91. Schmidt A, Kochanowski K, Vedelaar S, Ahrne E, Volkmer B, Callipo L,
et al. The quantitative and condition-dependent
Escherichia coli proteome. Nat Biotechnol 2016;34:104–110.
92. Technical Brief. Vol. 8. Protein Structure. Bethlehem: Particle Sciences Drug Development Services, 2009.