1. Chee CH, Jaafar J, Aziz IA, Hasan MH, Yeoh W. Algorithms for frequent itemset mining: a literature review. Artif Intell Rev 2019;52:2603–2621.
2. Nasreen S, Azam MA, Shehzad K, Naeem U, Ghazanfar MA. Frequent pattern mining algorithms for finding associated frequent patterns for data streams: a survey. Procedia Comput Sci 2014;37:109–116.
3. Mendel G. Versuche über Pflanzen-Hybriden. Verh Naturforsch Ver Brünn 1866;4:3–47.
4. Hashimoto L, Habita C, Beressi JP, Delepine M, Besse C, Cambon-Thomsen A,
et al. Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 1994;371:161–164.
12. Aggarwal CC, Han J. Frequent Pattern Mining. Cham: Springer, 2014.
13. Zimmermann A, Nijssen S. Supervised pattern mining and applications to classification. In: Frequent Pattern Mining (Aggarwal CC, Han J, eds.). Cham: Springer International Publishing, 2014. pp. 425–442.
14. Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: ACM SIGMOD International Conference on Management of Data (Buneman P, Jajodia S, Kim W, eds.). New York: Association for Computing Machinery, 1993. pp. 207–216.
15. Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th VLCB Conference on Very Large Data Bases, 1994 Sep 12-15; Santiago, Chile: 1994. San Francisco: Morgan Kaufmann Publishers, 1994. pp 487–499.
19. Liu J, Paulsen S, Sun X, Wang W, Nobel A, Prins J. Mining approximate frequent itemsets in the presence of noise: algorithm and analysis. In: Proceedings of the 2006 SIAM International Conference on Data Mining (SDM) (Ghosh J, Lambert D, Skillicorn D, Srivastava J, eds.). Philadelphia: Society for Industrial and Applied Mathematics, 2006. pp. 407–418.
21. Vreeken J, Tatti N. Interesting patterns. In: Frequent Pattern Mining (Agagarwal CC, Han J, eds.). Cham: Springer International Publishing, 2014. pp. 105–134.
22. Tonon A, Vandin F. Permutation strategies for mining significant sequential patterns. In: 2019 IEEE International Conference on Data Mining (ICDM), 2019 Nov 8-11; Beijing, China: Piscataway: Institute of Electrical and Electronics Engineers, 2019. pp 1330–1335.
23. Llinares-Lopez F, Sugiyama M, Papaxanthos L, Borgwardt K. Fast and memory-efficient significant pattern mining via permutation testing. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015 Aug 10-13; Sydney, Australia: New York: Association for Computing Machinery, 2015. pp 725–734.
24. Pellegrina L, Vandin F. Efficient mining of the most significant patterns with permutation testing. Data Min Knowl Discov 2020;34:1201–1234.
25. Pinxteren S, Calders T. Efficient permutation testing for significant sequential patterns. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), 2021 Apr 29-May 1; Virtual: Philadelphia: Society for Industrial and Applied Mathematics, 2021. pp 19–27.
27. Fournier-Viger P, Lin JC, Truong Chi T, Nkambou R. A survey of high utility itemset mining. In: High-Utility Pattern Mining: Theory, Algorithms and Applications (Fournier-Viger P, Lin JC, Nkambou R, Vo B, Tseng VS, eds.). Cham: Springer International Publishing, 2019. pp. 1–45.
28. Govender P, Fashoto SG, Maharaj L, Adeleke MA, Mbunge E, Olamijuwon J,
et al. The application of machine learning to predict genetic relatedness using human mtDNA hypervariable region I sequences. PLoS One 2022;17:e0263790.
30. Pfaffelhuber P, Grundner-Culemann F, Lipphardt V, Baumdicker F. How to choose sets of ancestry informative markers: a supervised feature selection approach. Forensic Sci Int Genet 2020;46:102259.
32. Moltke I, Korneliussen TS, Seguin-Orlando A, Moreno-Mayar JV, LaPointe E, Billeck W,
et al. Identifying a living great-grandson of the Lakota Sioux leader Tatanka Iyotake (Sitting Bull). Sci Adv 2021;7:eabh2013.
33. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF,
et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001;69:138–147.
34. Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM,
et al. A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 2007;31:306–315.
35. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003;19:376–382.
36. Chung Y, Lee SY, Elston RC, Park T. Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions. Bioinformatics 2007;23:71–76.
37. Lee SY, Chung Y, Elston RC, Kim Y, Park T. Log-linear model-based multifactor dimensionality reduction method to detect gene gene interactions. Bioinformatics 2007;23:2589–2595.
38. Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR,
et al. A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility. Ann Hum Genet 2011;75:20–28.
39. Hua X, Zhang H, Zhang H, Yang Y, Kuk AY. Testing multiple gene interactions by the ordered combinatorial partitioning method in case-control studies. Bioinformatics 2010;26:1871–1878.
40. Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC,
et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet 2007;80:1125–1137.
41. Gui J, Moore JH, Williams SM, Andrews P, Hillege HL, van der Harst P,
et al. A simple and computationally efficient approach to multifactor dimensionality reduction analysis of gene-gene interactions for quantitative traits. PLoS One 2013;8:e66545.
42. Lee Y, Kim H, Park T, Park M. Gene-gene interaction analysis for quantitative trait using cluster-based multifactor dimensionality reduction method. Int J Data Min Bioinform 2018;20:1–11.
45. Oh JS, Lee SY. An extension of multifactor dimensionality reduction method for detecting gene-gene interactions with the survival time. J Korean Data Inf Sci Soc 2014;25:1057–1067.
51. Gorriz JM, Jimenez-Mesa C, Segovia F, Ramirez J, Suckling J. A connection between pattern classification by machine learning and statistical inference with the general linear model. IEEE J Biomed Health Inform 2022;26:5332–5343.
53. Okazaki A, Ott J. Machine learning approaches to explore digenic inheritance. Trends Genet 2022;38:1013–1018.
54. Lucek PR, Ott J. Neural network analysis of complex traits. Genet Epidemiol 1997;14:1101–1106.
57. Shen Y, Liu Z, Ott J. Detecting gene-gene interactions using support vector machines with L1 penalty. In: 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops, 2010 Dec 18; Hong Kong, China: New York: Institute of Electrical and Electronics Engineers, 2010. pp 309–311.
58. Vani T. Impetus to machine learning in cardiac disease diagnosis. In: Image Processing for Automated Diagnosis of Cardiac Diseases (Chauhan K, Chauhan RK, eds.). Cambridge: Academic Press, 2021. pp. 99–116.
61. Goeman JJ, Solari A. Multiple hypothesis testing in genomics. Stat Med 2014;33:1946–1978.
63. Mantel N. Assessing laboratory evidence for neoplastic activity. Biometrics 1980;36:381–399.
65. Cheverud JM. A simple correction for multiple comparisons in interval mapping genome scans. Heredity (Edinb) 2001;87:52–58.
66. Agresti A. Categorical Data Analysis. 2nd ed. New York: Wiley-Interscience, 2002.
67. Manly BF, Navarro Alberto JA. Randomization, bootstrap and Monte Carlo methods in biology. Boca Raton: Taylor & Francis, 2021.
68. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001;125:279–284.
69. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001;29:1165–1188.
70. Liu Z, Ott J, Shen Y. P-value distribution in case-control association studies. In: 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops, 2010 Dec 18; Hong Kong, China: New York: Institute of Electrical and Electronics Engineers, 2010. pp 306–308.
73. Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C,
et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006;314:989–992.
74. Moore JH, Andrews PC. Epistasis analysis using multifactor dimensionality reduction. Methods Mol Biol 2015;1253:301–314.
75. Kerner G, Bouaziz M, Cobat A, Bigio B, Timberlake AT, Bustamante J,
et al. A genome-wide case-only test for the detection of digenic inheritance in human exomes. Proc Natl Acad Sci U S A 2020;117:19367–19375.