1. Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR,
et al. Genome-wide association studies. Nat Rev Methods Primers 2021;1:59.
3. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP,
et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008;9:356–369.
5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr,
et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003;42:1206–1252.
6. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF,
et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001;69:138–147.
8. Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC,
et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet 2007;80:1125–1137.
9. Gui J, Moore JH, Williams SM, Andrews P, Hillege HL, van der Harst P,
et al. A simple and computationally efficient approach to multifactor dimensionality reduction analysis of gene-gene interactions for quantitative traits. PLoS One 2013;8:e66545.
11. Gray RM. Entropy and Information Theory. 2nd ed. New York: Springer, 2011.
12. Paninski L. Estimation of entropy and mutual information. Neural Comput 2003;15:1191–1253.
14. Zeng G. A unified definition of mutual information with applications in machine learning. Math Problems Eng 2015;2015:201874.
16. Dong C, Chu X, Wang Y, Wang Y, Jin L, Shi T,
et al. Exploration of gene-gene interaction effects using entropy-based methods. Eur J Hum Genet 2008;16:229–235.
19. Yee J, Kwon MS, Jin S, Park T, Park M. Detecting genetic interactions for quantitative traits using m-Spacing entropy measure. Biomed Res Int 2015;2015:523641.
20. Silverman BW. Density estimation for statistics and data analysis. London: Chapman and Hall, 1986.
21. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ,
et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527–534.
22. Hall P, Morton SC. On the estimation of entropy. Ann Inst Stat Math 1993;45:69–88.
23. Jones MC. The performance of kernel density functions in kernel distribution function estimation. Stat Prob Lett 1990;9:129–132.
24. Charpentier A, Flachaire E. Log-transform kernel density estimation of income distribution. Actual Econ 2015;91:141–159.
26. Sheather SJ. Density estimation. Stat Sci 2004;19:588–597.
27. Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM,
et al. A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 2007;31:306–315.
30. Kanazawa A, Kawamura Y, Sekine A, Iida A, Tsunoda T, Kashiwagi A,
et al. Single nucleotide polymorphisms in the gene encoding Kruppel-like factor 7 are associated with type 2 diabetes. Diabetologia 2005;48:1315–1322.
31. Lamkin DM, Spitz DR, Shahzad MM, Zimmerman B, Lenihan DJ, Degeest K,
et al. Glucose as a prognostic factor in ovarian carcinoma. Cancer 2009;115:1021–1027.
32. Song H, Ramus SJ, Shadforth D, Quaye L, Kjaer SK, Dicioccio RA,
et al. Common variants in RB1 gene and risk of invasive ovarian cancer. Cancer Res 2006;66:10220–10226.
34. Li X, Jin T, Zhang M, Yang H, Huang X, Zhou X,
et al. Genome-wide association study of high-altitude pulmonary edema in a Han Chinese population. Oncotarget 2017;8:31568–31580.
37. Lee YS, Cho Y, Burgess S, Davey Smith G, Relton CL, Shin SY,
et al. Serum gamma-glutamyl transferase and risk of type 2 diabetes in the general Korean population: a Mendelian randomization study. Hum Mol Genet 2016;25:3877–3886.