1. Rak J, Yu JL. Oncogenes and tumor angiogenesis: the question of vascular "supply" and vascular "demand". Semin Cancer Biol 2004;14:93–104.
2. Croce CM. Oncogenes and cancer. N Engl J Med 2008;358:502–511.
3. Gordon K, Clouaire T, Bao XX, Kemp SE, Xenophontos M, de Las Heras JI,
et al. Immortality, but not oncogenic transformation, of primary human cells leads to epigenetic reprogramming of DNA methylation and gene expression. Nucleic Acids Res 2014;42:3529–3541.
4. Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem 2018;51:2647–2693.
5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–674.
6. Laubenbacher R, Hower V, Jarrah A, Torti SV, Shulaev V, Mendes P,
et al. A systems biology view of cancer. Biochim Biophys Acta 2009;1796:129–139.
7. Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-beta pathways impinge on Hedgehog signaling complexity: an open window on cancer. Front Genet 2019;10:711.
9. Khazaei S, Esa NM, Ramachandran V, Hamid RA, Pandurangan AK, Etemad A,
et al. In vitro antiproliferative and apoptosis inducing effect of
Allium atroviolaceum Bulb extract on breast, cervical, and liver cancer cells. Front Pharmacol 2017;8:5.
10. Schulz WA. Molecular Biology of Human Cancers: An Advanced Student’s Textbook. Dordrecht: Springer, 2007. pp. 113–144.
12. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009;9:550–562.
13. Bell HS, Ryan KM. Intracellular signalling and cancer: complex pathways lead to multiple targets. Eur J Cancer 2005;41:206–215.
14. Teng O. Isolation and characterisation of a cytotoxic napthoquinone from Impatiens balsamina. M.S. thesis Kampar: Universiti Tunku Abdul Rahman, 2010.
15. Ding ZS, Jiang FS, Chen NP, Lv GY, Zhu CG. Isolation and identification of an anti-tumor component from leaves of
Impatiens balsamina. Molecules 2008;13:220–229.
16. Yew WT, Kitson L, Hock AH, Chiew GS, Mooi LY. 2-Methoxy-1,4-naphthoquinone (MNQ) suppresses protein kinase C βI, δ, and ζ expression in Raji cells. J Appl Pharm Sci 2015;5:001–005.
17. Tan SY. Differential protein expression in K562 following exposure to MNQ isolated from Impatiens balsamina, Linn. M.S. thesis Kampar: Universiti Tunku Abdul Rahman, 2011.
18. Liew K, Yong PV, Lim YM, Navaratnam V, Ho AS. 2-Methoxy-1,4-Naphthoquinone (MNQ) suppresses the invasion and migration of a human metastatic breast cancer cell line (MDA-MB-231). Toxicol In Vitro 2014;28:335–339.
19. Mori N, Toume K, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M. 2-methoxy-1,4-naphthoquinone isolated from
Impatiens balsamina in a screening program for activity to inhibit Wnt signaling. J Nat Med 2011;65:234–236.
20. Liew K, Yong PV, Navaratnam V, Lim YM, Ho AS. Differential proteomic analysis on the effects of 2-methoxy-1,4-naphthoquinone towards MDA-MB-231 cell line. Phytomedicine 2015;22:517–527.
22. McDermott U, Ames RY, Iafrate AJ, Maheswaran S, Stubbs H, Greninger P,
et al. Ligand-dependent platelet-derived growth factor receptor (PDGFR)-alpha activation sensitizes rare lung cancer and sarcoma cells to PDGFR kinase inhibitors. Cancer Res 2009;69:3937–3946.
23. Etienne-Manneville S.
APC in cell migration. Adv Exp Med Biol 2009;656:30–40.
24. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 2011;1813:1978–1986.
26. Song J, Zhang J, Wang J, Cao Z, Wang J, Guo X,
et al. beta1 integrin modulates tumor growth and apoptosis of human colorectal cancer. Oncol Rep 2014;32:302–308.
27. Ong JY, Yong PV, Lim YM, Ho AS. 2-Methoxy-1,4-naphthoquinone (MNQ) induces apoptosis of A549 lung adenocarcinoma cells via oxidation-triggered JNK and p38 MAPK signaling pathways. Life Sci 2015;135:158–164.
29. Daughaday WH, Hall K, Raben MS, Salmon WD Jr, van den Brande JL, van Wyk JJ. Somatomedin: proposed designation for sulphation factor. Nature 1972;235:107.
30. Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci 2011;1243:54–68.
32. McKinsey EL, Parrish JK, Irwin AE, Niemeyer BF, Kern HB, Birks DK,
et al. A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs. Oncogene 2011;30:4910–4920.
33. Aggarwal BB. Signalling pathways of the
TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3:745–756.
34. D'Osualdo A, Ferlito F, Prigione I, Obici L, Meini A, Zulian F,
et al. Neutrophils from patients with
TNFRSF1A mutations display resistance to tumor necrosis factor-induced apoptosis: pathogenetic and clinical implications. Arthritis Rheum 2006;54:998–1008.
35. Lee RU, Saland S, Sullivan S. Tumor necrosis factor receptor-associated periodic syndrome as a cause of recurrent abdominal pain in identical twins and description of a novel mutation of the
TNFRSF1A gene. J Pediatr Gastroenterol Nutr 2013;56:e22–23.
36. Miura A, Honma R, Togashi T, Yanagisawa Y, Ito E, Imai J,
et al. Differential responses of normal human coronary artery endothelial cells against multiple cytokines comparatively assessed by gene expression profiles. FEBS Lett 2006;580:6871–6879.
37. MacEwan DJ.
TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 2002;14:477–492.
38. Gajate C, Mollinedo F. Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 2005;280:11641–11647.
39. Bender LM, Morgan MJ, Thomas LR, Liu ZG, Thorburn A. The adaptor protein
TRADD activates distinct mechanisms of apoptosis from the nucleus and the cytoplasm. Cell Death Differ 2005;12:473–481.
40. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL,
et al. Mutations in the
EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 2007;117:3846–3856.
41. Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 2012;38:904–910.
43. Wurtz SO, Schrohl AS, Mouridsen H, Brunner N. TIMP-1 as a tumor marker in breast cancer: an update. Acta Oncol 2008;47:580–590.
44. Wakefield A, Soukupova J, Montagne A, Ranger J, French R, Muller WJ,
et al. Bcl3 selectively promotes metastasis of ERBB2-driven mammary tumors. Cancer Res 2013;73:745–755.
45. Maldonado V, Espinosa M, Pruefer F, Patino N, Ceballos-Canciono G, Urzua U,
et al. Gene regulation by
BCL3 in a cervical cancer cell line. Folia Biol (Praha) 2010;56:183–193.
48. Elliott SF, Coon CI, Hays E, Stadheim TA, Vincenti MP. Bcl-3 is an interleukin-1-responsive gene in chondrocytes and synovial fibroblasts that activates transcription of the matrix metalloproteinase 1 gene. Arthritis Rheum 2002;46:3230–3239.
49. Kuwata H, Watanabe Y, Miyoshi H, Yamamoto M, Kaisho T, Takeda K,
et al. IL-10-inducible Bcl-3 negatively regulates LPS-induced
TNF-alpha production in macrophages. Blood 2003;102:4123–4129.
50. Hu X, Nesic-Taylor O, Qiu J, Rea HC, Fabian R, Rassin DK,
et al. Activation of nuclear factor-kappaB signaling pathway by interleukin-1 after hypoxia/ischemia in neonatal rat hippocampus and cortex. J Neurochem 2005;93:26–37.
51. Valenzuela JO, Hammerbeck CD, Mescher MF. Cutting edge: Bcl-3 up-regulation by signal 3 cytokine (IL-12) prolongs survival of antigen-activated CD8 T cells. J Immunol 2005;174:600–604.
52. Brocke-Heidrich K, Ge B, Cvijic H, Pfeifer G, Loffler D, Henze C,
et al.
BCL3 is induced by IL-6 via Stat3 binding to intronic enhancer HS4 and represses its own transcription. Oncogene 2006;25:7297–7304.
53. Vatsveen TK, Ro TB, Hella H,
et al. High expression of
BCL3 in human myeloma cells is associated with increased proliferation and inferior prognosis. Eur J Haematol 2009;82:354–363.
55. Raab-Traub N. Epstein-Barr virus LMP1 activates
EGFR, STAT3, and ERK through effects on PKCdelta. J Virol 2011;85:4399–4408.