1. Yuan Y, You Y, Huang D, Cui J, Wang Y, Wang Q,
et al. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China. J Transl Med 2009;7:79.
4. Korver AM, Smith RJ, Van Camp G, Schleiss MR, Bitner-Glindzicz MA, Lustig LR,
et al. Congenital hearing loss. Nat Rev Dis Primers 2017;3:16094.
5. Schrijver I. Hereditary non-syndromic sensorineural hearing loss: transforming silence to sound. J Mol Diagn 2004;6:275–284.
8. Cabanillas R, Dineiro M, Cifuentes GA, Castillo D, Pruneda PC, Alvarez R,
et al. Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients. BMC Med Genomics 2018;11:58.
13. Udhaya Kumar S, Thirumal Kumar D, Bithia R, Sankar S, Magesh R, Sidenna M,
et al. Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: a systematic and bioinformatics approach. Front Genet 2020;11:734.
16. Karimizadeh E, Sharifi-Zarchi A, Nikaein H, Salehi S, Salamatian B, Elmi N,
et al. Analysis of gene expression profiles and protein-protein interaction networks in multiple tissues of systemic sclerosis. BMC Med Genomics 2019;12:199.
17. Tomkins JE, Manzoni C. Advances in protein-protein interaction network analysis for Parkinson's disease. Neurobiol Dis 2021;155:105395.
19. Srivastava N, Mishra BN, Srivastava P. Protein network analysis to prioritize key genes and pathway for stress-mediated neurodegeneration. Open Bioinformatics J 2018;11:240–251.
22. Chadly DM, Best J, Ran C, Bruska M, Wozniak W, Kempisty B,
et al. Developmental profiling of microRNAs in the human embryonic inner ear. PLoS One 2018;13:e0191452.
23. Solda G, Robusto M, Primignani P, Castorina P, Benzoni E, Cesarani A,
et al. A novel mutation within the
MIR96 gene causes non-syndromic inherited hearing loss in an Italian family by altering pre-miRNA processing. Hum Mol Genet 2012;21:577–585.
24. Hildebrand MS, Witmer PD, Xu S, Newton SS, Kahrizi K, Najmabadi H,
et al. miRNA mutations are not a common cause of deafness. Am J Med Genet A 2010;152:646–652.
25. Matsuda K. PCR-based detection methods for single-nucleotide polymorphism or mutation: real-time PCR and its substantial contribution toward technological refinement. Adv Clin Chem 2017;80:45–72.
26. Shastry BS. SNPs in disease gene mapping, medicinal drug development and evolution. J Hum Genet 2007;52:871–880.
27. Das SS, Chakravorty N. Identification of deleterious SNPs and their effects on
BCL11A, the master regulator of fetal hemoglobin expression. Genomics 2020;112:397–403.
29. Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J,
et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 2014;10:e1003440.
35. Wang B, Hu B, Yang S. Cell junction proteins within the cochlea: a review of recent research. J Otol 2015;10:131–135.
37. Nayak G, Lee SI, Yousaf R, Edelmann SE, Trincot C, Van Itallie CM,
et al. Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J Clin Invest 2013;123:4036–4049.
39. Mittal R, Liu G, Polineni SP, Bencie N, Yan D, Liu XZ. Role of microRNAs in inner ear development and hearing loss. Gene 2019;686:49–55.
41. Sohmer H. Pathophysiological mechanisms of hearing loss. J Basic Clin Physiol Pharmacol 1997;8:113–125.
42. Hirata H, Ueno K, Shahryari V, Tanaka Y, Tabatabai ZL, Hinoda Y,
et al. Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer. PLoS One 2012;7:e51056.
43. Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL,
et al. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 2013;108:1659–1667.
44. Zhou J, Zhang C, Zhou B, Jiang D. miR-183 modulated cell proliferation and apoptosis in ovarian cancer through the TGF-beta/Smad4 signaling pathway. Int J Mol Med 2019;43:1734–1746.
45. Lewis MA, Di Domenico F, Ingham NJ, Prosser HM, Steel KP. Hearing impairment due to Mir183/96/182 mutations suggests both loss and gain of function effects. Dis Model Mech 2020;14:dmm047225.
47. Gallione C, Aylsworth AS, Beis J, Berk T, Bernhardt B, Clark RD,
et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am J Med Genet A 2010;152A:333–339.
48. Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S,
et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 2004;363:852–859.
49. Aretz S, Stienen D, Uhlhaas S, Stolte M, Entius MM, Loff S,
et al. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet 2007;44:702–709.
50. Howe JR, Sayed MG, Ahmed AF, Ringold J, Larsen-Haidle J, Merg A,
et al. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet 2004;41:484–491.
51. Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Jarvinen H, Mecklin JP,
et al.
SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res 2005;11:2606–2611.
52. Attisano L, Lee-Hoeflich ST. The Smads. Genome Biol 2001;2:REVIEWS3010.
53. Kuang C, Chen Y. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction. Oncogene 2004;23:1021–1029.