1. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 2018;13:599–604.
2. Matula K, Rivello F, Huck WT. Single-cell analysis using froplet microfluidics. Adv Biosyst 2020;4:e1900188.
3. Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R,
et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017;357:661–667.
7. Carter B, Zhao K. The epigenetic basis of cellular heterogeneity. Nat Rev Genet 2021;22:235–250.
8. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A,
et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010;28:1045–1048.
9. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A,
et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317–330.
10. Zhu C, Preissl S, Ren B. Single-cell multimodal omics: the power of many. Nat Methods 2020;17:11–14.
11. Adey A, Morrison HG, Asan, Xun X, Kitzman JO, Turner EH,
et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density
in vitro transposition. Genome Biol 2010;11:R119.
13. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG,
et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 2019;10:1930.
15. Guo H, Zhu P, Guo F, Li X, Wu X, Fan X,
et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 2015;10:645–659.
16. Niemoller C, Wehrle J, Riba J, Claus R, Renz N, Rhein J,
et al. Bisulfite-free epigenomics and genomics of single cells through methylation-sensitive restriction. Commun Biol 2021;4:153.
17. Shareef SJ, Bevill SM, Raman AT, Aryee MJ, van Galen P, Hovestadt V,
et al. Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells. Nat Biotechnol 2021;39:1086–1094.
18. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL,
et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 2015;348:910–914.
19. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP,
et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 2015;523:486–490.
20. Lai B, Gao W, Cui K, Xie W, Tang Q, Jin W,
et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 2018;562:281–285.
21. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA,
et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 2015;33:1165–1172.
22. Ku WL, Nakamura K, Gao W, Cui K, Hu G, Tang Q,
et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification. Nat Methods 2019;16:323–325.
23. Carter B, Ku WL, Kang JY, Hu G, Perrie J, Tang Q,
et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat Commun 2019;10:3747.
24. Harada A, Maehara K, Handa T, Arimura Y, Nogami J, Hayashi-Takanaka Y,
et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat Cell Biol 2019;21:287–296.
25. Wang Q, Xiong H, Ai S, Yu X, Liu Y, Zhang J,
et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol Cell 2019;76:206–216.
26. Wu SJ, Furlan SN, Mihalas AB, Kaya-Okur HS, Feroze AH, Emerson SN,
et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat Biotechnol 2021;39:819–824.
27. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX,
et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 2016;13:229–232.
28. Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C,
et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun 2018;9:781.
29. Yan R, Gu C, You D, Huang Z, Qian J, Yang Q,
et al. Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing. Cell Stem Cell 2021;28:1641–1656.
30. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P,
et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 2016;26:304–319.
31. Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ,
et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 2018;361:1380–1385.
32. Zhu C, Yu M, Huang H, Juric I, Abnousi A, Hu R,
et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat Struct Mol Biol 2019;26:1063–1070.
35. Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol 2010;20:R780–R785.
36. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001;293:1089–1093.
37. Hajkova P. Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos Trans R Soc Lond B Biol Sci 2011;366:2266–2273.
38. Lee DS, Shin JY, Tonge PD, Puri MC, Lee S, Park H,
et al. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nat Commun 2014;5:5619.
39. Berdasco M, Esteller M. DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther 2011;2:42.
40. Nishizawa M, Chonabayashi K, Nomura M, Tanaka A, Nakamura M, Inagaki A,
et al. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell 2016;19:341–354.
41. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT,
et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol 2019;20:249.
44. Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KY,
et al. DNA methylation cancer biomarkers: translation to the clinic. Front Genet 2019;10:1150.
46. Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N,
et al. Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics 2007;89:326–337.
47. Lokk K, Modhukur V, Rajashekar B, Martens K, Magi R, Kolde R,
et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 2014;15:r54.
48. Wan J, Oliver VF, Wang G, Zhu H, Zack DJ, Merbs SL,
et al. Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genomics 2015;16:49.
49. Park K, Kim MY, Vickers M, Park JS, Hyun Y, Okamoto T,
et al. DNA demethylation is initiated in the central cells of
Arabidopsis and rice. Proc Natl Acad Sci U S A 2016;113:15138–15143.
50. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW,
et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 1992;89:1827–1831.
52. Hong SR, Shin KJ. Bisulfite-converted DNA quantity evaluation: a multiplex quantitative real-time PCR system for evaluation of bisulfite conversion. Front Genet 2021;12:618955.
53. Vaisvila R, Ponnaluri VK, Sun Z, Langhorst BW, Saleh L, Guan S,
et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res 2021;31:1280–1289.
54. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J,
et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 2014;11:817–820.
56. Karemaker ID, Vermeulen M. Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol 2018;36:952–965.
57. Luo C, Rivkin A, Zhou J, Sandoval JP, Kurihara L, Lucero J,
et al. Robust single-cell DNA methylome profiling with snmC-seq2. Nat Commun 2018;9:3824.
60. Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G,
et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 2015;528:142–146.
61. Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, Kohlway AS,
et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol 2019;37:916–924.
62. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z,
et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008;132:887–898.
64. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A,
et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008;454:766–770.
65. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G,
et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007;448:553–560.
66. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z,
et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129:823–837.
67. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of
in vivo protein-DNA interactions. Science 2007;316:1497–1502.
68. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T,
et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 2007;4:651–657.
69. Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol 2021;39:825–835.
71. Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C, Kapourani CA,
et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 2019;576:487–491.
72. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ,
et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019;566:496–502.
73. Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM,
et al. A human cell atlas of fetal gene expression. Science 2020;370:eaba7721.