1. Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME,
et al. A brief history of human disease genetics. Nature 2020;577:179–189.
2. Flannick J, Florez JC. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat Rev Genet 2016;17:535–549.
3. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA,
et al. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet 2017;101:5–22.
4. Buniello A, MacArthur JA, Cerezo M, Harris LW, Hayhurst J, Malangone C,
et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 2019;47:D1005–D1012.
7. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW,
et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 2018;50:1505–1513.
8. Spracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S,
et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020;582:240–245.
9. Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics 2015;18:40–51.
10. Gan W, Walters RG, Holmes MV, Bragg F, Millwood IY, Banasik K,
et al. Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank. Diabetologia 2016;59:1446–1457.
11. Almawi WY, Nemr R, Keleshian SH, Echtay A, Saldanha FL, AlDoseri FA,
et al. A replication study of 19 GWAS-validated type 2 diabetes at-risk variants in the Lebanese population. Diabetes Res Clin Pract 2013;102:117–122.
13. Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, Lyssenko V,
et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 2011;54:2811–2819.
14. Hou K, Burch KS, Majumdar A, Shi H, Mancuso N, Wu Y,
et al. Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic architecture. Nat Genet 2019;51:1244–1251.
15. Kim Y, Han BG, Ko GE, KoGES group. Cohort profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int J Epidemiol 2017;46:e20.
16. Johnson R, McNutt P, MacMahon S, Robson R. Use of the Friedewald formula to estimate LDL-cholesterol in patients with chronic renal failure on dialysis. Clin Chem 1997;43:2183–2184.
17. Moon S, Kim YJ, Han S, Hwang MY, Shin DM, Park MY,
et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci Rep 2019;9:1382.
19. Abraham G, Qiu Y, Inouye M. FlashPCA2: principal component analysis of Biobank-scale genotype datasets. Bioinformatics 2017;33:2776–2778.
20. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
et al. The human genome browser at UCSC. Genome Res 2002;12:996–1006.
21. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM,
et al. A global reference for human genetic variation. Nature 2015;526:68–74.
23. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K,
et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018;562:203–209.
24. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium,
et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 2015;47:291–295.