1. Kilfoy BA, Zheng T, Holford TR, Han X, Ward MH, Sjodin A,
et al. International patterns and trends in thyroid cancer incidence, 1973-2002. Cancer Causes Control 2009;20:525–531.
2. Wang TS, Sosa JA. Thyroid surgery for differentiated thyroid cancer: recent advances and future directions. Nat Rev Endocrinol 2018;14:670–683.
3. Sampson E, Brierley JD, Le LW, Rotstein L, Tsang RW. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer 2007;110:1451–1456.
4. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A,
et al. Comprehensive characterization of cancer driver genes and mutations. Cell 2018;173:371–385.
5. Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S,
et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep 2018;23:227–238.
6. Demircioglu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA,
et al. A Pan-cancer transcriptome analysis reveals pervasive regulation through alternative promoters. Cell 2019;178:1465–1477.
7. Ciampi R, Giordano TJ, Wikenheiser-Brokamp K, Koenig RJ, Nikiforov YE. HOOK3-RET: a novel type of
RET/PTC rearrangement in papillary thyroid carcinoma. Endocr Relat Cancer 2007;14:445–452.
8. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE.
PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 2002;26:1016–1023.
9. Nikiforov YE. Role of molecular markers in thyroid nodule management: Then and Now. Endocr Pract 2017;23:979–988.
10. Liu M, Chen P, Hu HY, Ou-Yang DJ, Khushbu RA, Tan HL,
et al. Kinase gene fusions: roles and therapeutic value in progressive and refractory papillary thyroid cancer. J Cancer Res Clin Oncol 2021;147:323–337.
11. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z,
et al.
NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 2016;122:1097–1107.
12. Chu YH, Dias-Santagata D, Farahani AA, Boyraz B, Faquin WC, Nose V,
et al. Clinicopathologic and molecular characterization of
NTRK-rearranged thyroid carcinoma (NRTC). Mod Pathol 2020;33:2186–2197.
13. Albert CM, Davis JL, Federman N, Casanova M, Laetsch TW.
TRK fusion cancers in children: a clinical review and recommendations for screening. J Clin Oncol 2019;37:513–524.
14. Panebianco F, Nikitski AV, Nikiforova MN, Kaya C, Yip L, Condello V,
et al. Characterization of thyroid cancer driven by known and novel
ALK fusions. Endocr Relat Cancer 2019;26:803–814.
16. Ni Chin WH, Li Z, Jiang N, Lim EH, Suang Lim JY, Lu Y,
et al. Practical considerations for using RNA sequencing in management of B-lymphoblastic leukemia: Malaysia-Singapore Acute Lymphoblastic Leukemia 2020 Implementation Strategy. J Mol Diagn 2021;23:1359–1372.
17. Hu S, Li Q, Peng W, Feng C, Zhang S, Li C.
VIT-ALK, a novel alectinib-sensitive fusion gene in lung adenocarcinoma. J Thorac Oncol 2018;13:e72–e74.
18. Wang L, Chen M, Wu B, Liu YC, Zhang GF, Jiang L,
et al. Massively parallel sequencing of forensic STRs using the Ion Chef and the Ion S5 XL systems. J Forensic Sci 2018;63:1692–1703.
19. Panebianco F, Kelly LM, Liu P, Zhong S, Dacic S, Wang X,
et al.
THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer. Proc Natl Acad Sci U S A 2017;114:2307–2312.
20. Di Cristofaro J, Marcy M, Vasko V, Sebag F, Fakhry N, Wynford-Thomas D,
et al. Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum Pathol 2006;37:824–830.
21. Santarpia L, Myers JN, Sherman SI, Trimarchi F, Clayman GL, El-Naggar AK. Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 2010;116:2974–2983.
22. Sheils OM, O'Leary JJ, Sweeney EC. Assessment of ret/PTC-1 rearrangements in neoplastic thyroid tissue using TaqMan RT-PCR. J Pathol 2000;192:32–36.
23. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun 2014;5:4846.
24. Giannini R, Salvatore G, Monaco C, Sferratore F, Pollina L, Pacini F,
et al. Identification of a novel subtype of H4-RET rearrangement in a thyroid papillary carcinoma and lymph node metastasis. Int J Oncol 2000;16:485–489.
25. Musholt PB, Imkamp F, von Wasielewski R, Schmid KW, Musholt TJ.
RET rearrangements in archival oxyphilic thyroid tumors: new insights in tumorigenesis and classification of Hurthle cell carcinomas? Surgery 2003;134:881–889.
26. Elisei R, Romei C, Soldatenko PP, Cosci B, Vorontsova T, Vivaldi A,
et al. New breakpoints in both the H4 and
RET genes create a variant of PTC-1 in a post-Chernobyl papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2000;53:131–136.
27. Liu RT, Chou FF, Wang CH, Lin CL, Chao FP, Chung JC,
et al. Low prevalence of
RET rearrangements (
RET/PTC1, RET/PTC2, RET/PTC3, and
ELKS-RET) in sporadic papillary thyroid carcinomas in Taiwan Chinese. Thyroid 2005;15:326–335.
28. Nakata T, Kitamura Y, Shimizu K, Tanaka S, Fujimori M, Yokoyama S,
et al. Fusion of a novel gene,
ELKS, to
RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer 1999;25:97–103.
29. Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. Detection of a novel type of
RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved
RET-fused gene
RFG5. Cancer Res 1998;58:198–203.
30. Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M,
et al.
RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res 2008;68:7176–7182.
31. Sheu SY, Schwertheim S, Worm K, Grabellus F, Schmid KW. Diffuse sclerosing variant of papillary thyroid carcinoma: lack of
BRAF mutation but occurrence of
RET/PTC rearrangements. Mod Pathol 2007;20:779–787.
32. Liu S, Gao A, Zhang B, Zhang Z, Zhao Y, Chen P,
et al. Assessment of molecular testing in fine-needle aspiration biopsy samples: an experience in a Chinese population. Exp Mol Pathol 2014;97:292–297.
33. Corvi R, Berger N, Balczon R, Romeo G.
RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene 2000;19:4236–4242.
34. Cheung CC, Boerner SL, MacMillan CM, Ramyar L, Asa SL. Hyalinizing trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol 2000;24:1622–1626.
35. Chua EL, Wu WM, Tran KT, McCarthy SW, Lauer CS, Dubourdieu D,
et al. Prevalence and distribution of ret/ptc 1, 2, and 3 in papillary thyroid carcinoma in New Caledonia and Australia. J Clin Endocrinol Metab 2000;85:2733–2739.
36. Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the
RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 1999;18:4388–4393.
37. Saenko V, Rogounovitch T, Shimizu-Yoshida Y, Abrosimov A, Lushnikov E, Roumiantsev P,
et al. Novel tumorigenic rearrangement, Delta rfp/ret, in a papillary thyroid carcinoma from externally irradiated patient. Mutat Res 2003;527:81–90.
38. Iyama K, Matsuse M, Mitsutake N, Rogounovitch T, Saenko V, Suzuki K,
et al. Identification of three novel fusion oncogenes,
SQSTM1/NTRK3, AFAP1L2/RET, and
PPFIBP2/RET, in thyroid cancers of young patients in Fukushima. Thyroid 2017;27:811–818.
39. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T,
et al.
KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012;18:375–377.
40. Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN,
et al. Oncogenic
AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 2005;115:94–101.
41. Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F, Knauf JA,
et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013;123:4935–4944.
42. Cordioli MI, Moraes L, Carvalheira G, Sisdelli L, Alves MT, Delcelo R,
et al.
AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma. Cancer Med 2016;5:1535–1541.
43. He H, Li W, Yan P, Bundschuh R, Killian JA, Labanowska J,
et al. Identification of a recurrent
LMO7-BRAF fusion in papillary thyroid carcinoma. Thyroid 2018;28:748–754.
44. Ibrahimpasic T, Xu B, Landa I, Dogan S, Middha S, Seshan V,
et al. Genomic alterations in fatal forms of non-anaplastic thyroid cancer: identification of
MED12 and
RBM10 as novel thyroid cancer genes associated with tumor virulence. Clin Cancer Res 2017;23:5970–5980.
45. Efanov AA, Brenner AV, Bogdanova TI, Kelly LM, Liu P, Little MP,
et al. Investigation of the relationship between radiation dose and gene mutations and fusions in post-chernobyl thyroid cancer. J Natl Cancer Inst 2018;110:371–378.
46. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H,
et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet 2016;12:e1006239.
47. Hu X, Wang Q, Tang M, Barthel F, Amin S, Yoshihara K,
et al. TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Res 2018;46:D1144–D1149.
48. Perot G, Soubeyran I, Ribeiro A, Bonhomme B, Savagner F, Boutet-Bouzamondo N,
et al. Identification of a recurrent
STRN/ALK fusion in thyroid carcinomas. PLoS One 2014;9:e87170.
49. Kelly LM, Barila G, Liu P, Evdokimova VN, Trivedi S, Panebianco F,
et al. Identification of the transforming
STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A 2014;111:4233–4238.
50. Hamatani K, Mukai M, Takahashi K, Hayashi Y, Nakachi K, Kusunoki Y. Rearranged anaplastic lymphoma kinase (
ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors. Thyroid 2012;22:1153–1159.
51. Zeng Q, Gao H, Zhang L, Qin S, Gu Y, Chen Q. Coexistence of a secondary
STRN-ALK,
EML4-ALK double-fusion variant in a lung adenocarcinoma patient with
EGFR mutation: a case report. Anticancer Drugs 2021;32:890–893.
52. Ji JH, Oh YL, Hong M, Yun JW, Lee HW, Kim D,
et al. Identification of driving
ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet 2015;11:e1005467.
53. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH,
et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 2016;126:1052–1066.
54. Liang J, Cai W, Feng D, Teng H, Mao F, Jiang Y,
et al. Genetic landscape of papillary thyroid carcinoma in the Chinese population. J Pathol 2018;244:215–226.
55. Greco A, Mariani C, Miranda C, Lupas A, Pagliardini S, Pomati M,
et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:6118–6127.
56. Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA. A sequence analysis of the genomic regions involved in the rearrangements between
TPM3 and
NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics 1995;28:15–24.
57. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA. Chromosome 1 rearrangements involving the genes
TPR and
NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 1997;19:112–123.
58. Greco A, Pierotti MA, Bongarzone I, Pagliardini S, Lanzi C, Della Porta G. TRK-T1 is a novel oncogene formed by the fusion of
TPR and
TRK genes in human papillary thyroid carcinomas. Oncogene 1992;7:237–242.
59. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X,
et al. Identification of targetable
FGFR gene fusions in diverse cancers. Cancer Discov 2013;3:636–647.
60. Leeman-Neill RJ, Kelly LM, Liu P, Brenner AV, Little MP, Bogdanova TI,
et al.
ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799–807.
61. Lui WO, Zeng L, Rehrmann V, Deshpande S, Tretiakova M, Kaplan EL,
et al.
CREB3L2-PPARgamma fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res 2008;68:7156–7164.
62. Chia WK, Sharifah NA, Reena RM, Zubaidah Z, Clarence-Ko CH, Rohaizak M,
et al. Fluorescence in situ hybridization analysis using
PAX8- and
PPARG-specific probes reveals the presence of
PAX8-PPARG translocation and 3p25 aneusomy in follicular thyroid neoplasms. Cancer Genet Cytogenet 2010;196:7–13.
63. Kasaian K, Wiseman SM, Walker BA, Schein JE, Zhao Y, Hirst M,
et al. The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy. BMC Cancer 2015;15:984.
64. Ritterhouse LL, Wirth LJ, Randolph GW, Sadow PM, Ross DS, Liddy W,
et al.
ROS1 rearrangement in thyroid cancer. Thyroid 2016;26:794–797.
65. Nohr E, Kunder CA, Jones C, Sutton S, Fung E, Zhu H,
et al. Development and clinical validation of a targeted RNAseq panel (Fusion-STAMP) for diagnostic and predictive gene fusion detection in solid tumors. Preprint at
https://www.biorxiv.org/content/10.1101/870634v1.full (2019).
66. Tsuji T, Ozasa H, Aoki W, Aburaya S, Funazo T, Furugaki K,
et al. Alectinib resistance in
ALK-rearranged lung cancer by dual salvage signaling in a clinically paired resistance model. Mol Cancer Res 2019;17:212–224.