1. Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 2003;2:205–213.
2. Friedman ZY. Recent advances in understanding the molecular mechanisms of tamoxifen action. Cancer Invest 1998;16:391–396.
3. Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M,
et al. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 2013;39:935–946.
4. Osborne CK, Boldt DH, Clark GM, Trent JM. Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res 1983;43:3583–3585.
5. Baral E, Nagy E, Berczi I. Modulation of natural killer cell-mediated cytotoxicity by tamoxifen and estradiol. Cancer 1995;75:591–599.
6. Khan SZ, Longland CL, Michelangeli F. The effects of phenothiazines and other calmodulin antagonists on the sarcoplasmic and endoplasmic reticulum Ca(2+) pumps. Biochem Pharmacol 2000;60:1797–1806.
7. Wiseman H, Cannon M, Arnstein HR, Halliwell B. Enhancement by tamoxifen of the membrane antioxidant action of the yeast membrane sterol ergosterol: relevance to the antiyeast and anticancer action of tamoxifen. Biochim Biophys Acta 1993;1181:201–206.
8. Wagner EM, Gallagher SJ, Reddy S, Mitzner W. Effects of tamoxifen on ischemia-induced angiogenesis in the mouse lung. Angiogenesis 2003;6:65–71.
10. Gundimeda U, Chen ZH, Gopalakrishna R. Tamoxifen modulates protein kinase C via oxidative stress in estrogen receptor-negative breast cancer cells. J Biol Chem 1996;271:13504–13514.
11. Chang Y, Lee JJ, Chen WF, Chou DS, Huang SY, Sheu JR. A novel role for tamoxifen in the inhibition of human platelets. Transl Res 2011;157:81–91.
12. Chen IC, Hsiao LP, Huang IW, Yu HC, Yeh LC, Lin CH,
et al. Phosphatidylinositol-3 kinase inhibitors, buparlisib and alpelisib, sensitize estrogen receptor-positive breast cancer cells to tamoxifen. Sci Rep 2017;7:9842.
13. Chen Y, Schindler M, Simon SM. A mechanism for tamoxifen-mediated inhibition of acidification. J Biol Chem 1999;274:18364–18373.
14. Hasegawa G, Akatsuka K, Nakashima Y, Yokoe Y, Higo N, Shimonaka M. Tamoxifen inhibits the proliferation of nonmelanoma skin cancer cells by increasing intracellular calcium concentration. Int J Oncol 2018;53:2157–2166.
15. de Medina P, Favre G, Poirot M. Multiple targeting by the antitumor drug tamoxifen: a structure-activity study. Curr Med Chem Anticancer Agents 2004;4:491–508.
17. Beggs WH. Anti-Candida activity of the anti-cancer drug tamoxifen. Res Commun Chem Pathol Pharmacol 1993;80:125–128.
18. Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS,
et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 2004;116:121–137.
19. Wiseman H, Cannon M, Arnstein HR. Observation and significance of growth inhibition of
Saccharomyces cerevisiae (A224A) by the anti-oestrogen drug tamoxifen. Biochem Soc Trans 1989;17:1038–1039.
22. Han S, Lee M, Chang H, Nam M, Park HO, Kwak YS,
et al. Construction of the first compendium of chemical-genetic profiles in the fission yeast
Schizosaccharomyces pombe and comparative compendium approach. Biochem Biophys Res Commun 2013;436:613–618.
23. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B,
et al. Functional characterization of the
S. cerevisiae genome by gene deletion and parallel analysis. Science 1999;285:901–906.
24. Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J,
et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 2006;126:611–625.
25. Iorns E, Lord CJ, Ashworth A. Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem J 2009;417:361–370.
26. Mendes-Pereira AM, Sims D, Dexter T, Fenwick K, Assiotis I, Kozarewa I,
et al. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proc Natl Acad Sci U S A 2012;109:2730–2735.
27. Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M,
et al. Analysis of a genome-wide set of gene deletions in the fission yeast
Schizosaccharomyces pombe. Nat Biotechnol 2010;28:617–623.
28. Kume K, Hashimoto T, Suzuki M, Mizunuma M, Toda T, Hirata D. Identification of three signaling molecules required for calcineurin-dependent monopolar growth induced by the DNA replication checkpoint in fission yeast. Biochem Biophys Res Commun 2017;491:883–889.
29. Chesnel F, Couturier A, Alusse A, Gagne JP, Poirier GG, Jean D,
et al. The prefoldin complex stabilizes the von Hippel-Lindau protein against aggregation and degradation. PLoS Genet 2020;16:e1009183.
30. Haridas V. Tailoring of peptide vesicles: a bottom-up chemical approach. Acc Chem Res 2021;54:1934–1949.
31. Takegawa K, Iwaki T, Fujita Y, Morita T, Hosomi A, Tanaka N. Vesicle-mediated protein transport pathways to the vacuole in
Schizosaccharomyces pombe. Cell Struct Funct 2003;28:399–417.
32. Taleat Z, Larsson A, Ewing AG. Anticancer drug tamoxifen affects catecholamine transmitter release and storage from single cells. ACS Chem Neurosci 2019;10:2060–2069.