1. Surman M, Janik ME. Stress and its molecular consequences in cancer progression. Postepy Hig Med Dosw (Online) 2017;71:485–499.
2. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 2019;92:121–135.
3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M,
et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–E386.
4. DeSantis CE, Miller KD, Dale W, Mohile SG, Cohen HJ, Leach CR,
et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin 2019;69:452–467.
5. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017;7:1016–1036.
6. Yehya AH, Asif M, Petersen SH, Subramaniam AV, Kono K, Majid A,
et al. Angiogenesis: managing the culprits behind tumorigenesis and metastasis. Medicina (Kaunas) 2018;54:8.
9. Risau W. Mechanisms of angiogenesis. Nature 1997;386:671–674.
10. Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995;1:149–153.
11. Parangi S, O'Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J,
et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A 1996;93:2002–2007.
12. Hisano Y, Hla T. Bioactive lysolipids in cancer and angiogenesis. Pharmacol Ther 2019;193:91–98.
13. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582–1584.
14. Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 2001;22:201–207.
15. Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007;62:179–213.
16. Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. Sci STKE 2001;2001:re21.
18. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999;13:9–22.
19. Melincovici CS, Bosca AB, Susman S, Marginean M, Mihu C, Istrate M,
et al. Vascular endothelial growth factor (VEGF): key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 2018;59:455–467.
21. Claesson-Welsh L. VEGF receptor signal transduction: a brief update. Vascul Pharmacol 2016;86:14–17.
22. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE,
et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci 2018;19:1264.
23. Alvarez-Aznar A, Muhl L, Gaengel K. VEGF receptor tyrosine kinases: key regulators of vascular function. Curr Top Dev Biol 2017;123:433–482.
24. Kilickap S, Abali H, Celik I. Bevacizumab, bleeding, thrombosis, and warfarin. J Clin Oncol 2003;21:3542.
26. Elice F, Rodeghiero F. Side effects of anti-angiogenic drugs. Thromb Res 2012;129 Suppl 1:S50–53.
28. Elice F, Rodeghiero F. Bleeding complications of antiangiogenic therapy: pathogenetic mechanisms and clinical impact. Thromb Res 2010;125 Suppl 2:S55–57.
29. Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol 2001;280:C1375–1386.
31. Hirai M, Nakagawara A, Oosaki T, Hayashi Y, Hirono M, Yoshihara T. Expression of vascular endothelial growth factors (VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma. Gynecol Oncol 2001;80:181–188.
32. Priya R, Sumitha R, Doss CG, Rajasekaran C, Babu S, Seenivasan R,
et al. Molecular docking and molecular dynamics to identify a novel human immunodeficiency virus inhibitor from alkaloids of Toddalia asiatica. Pharmacogn Mag 2015;11(Suppl 3):S414–S422.
35. Furnham N, Holliday GL, de Beer TA, Jacobsen JO, Pearson WR, Thornton JM. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res 2014;42:D485–D489.
36. Chakraborty C, Mallick B, Sharma AR, Sharma G, Jagga S, Doss CG,
et al. Micro-environmental signature of the interactions between druggable target protein, dipeptidyl peptidase-IV, and anti-diabetic drugs. Cell J 2017;19:65–83.
37. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S,
et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 2019;47:D1102–D1109.
41. Gao YD, Huang JF. [An extension strategy of Discovery Studio 2.0 for non-bonded interaction energy automatic calculation at the residue level]. Dongwuxue Yanjiu 2011;32:262–266.
42. Alqahtani S. In silico ADME-Tox modeling: progress and prospects. Expert Opin Drug Metab Toxicol 2017;13:1147–1158.
43. Sander T, Freyss J, Korff M, Reich JR, Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 2009;49:232–246.
44. Lagorce D, Maupetit J, Baell J, Sperandio O, Tuffery P, Miteva MA,
et al. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 2011;27:2018–2020.
46. Miguel JS, Weisel K, Moreau P, Lacy M, Song K, Delforge M,
et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 2013;14:1055–1066.
47. Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett 2012;320:130–137.
50. Liu K, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J Chem Inf Model 2017;57:2514–2522.