The Classification Begins!
Classification and analysis are milestones for scientific understanding. Now, it is TNBC’s turn. In 2011, Lehmann et al. [
9] classified TNBC into six subtypes using 587 TNBC patients based on transcriptome profiling data as follows:
(1) The basal-like 1 subtype is involved in cell cycle and cell division pathways and shows overexpression of the AURKA, AURKB, BIRC5, BUB1, CENPA, CENPF, CCNA2, MYC, NRAS, PRC1, PLK1, and TTK genes. In addition, the expression of DNA repair (ATR/BRCA pathway)–related genes, such as CHEK1, FANCA, FANCG, RAD54BP, RAD51, NBN, EXO1, MSH2, MCM10, RAD21, and MDC1, is significantly increased.
(2) The basal-like 2 subtype is associated with increased expression of growth factor signaling pathways, including the EGF, NGF, MET, Wnt/β-catenin, and IGF1R pathways.
(3) The immunomodulatory subtype (IM subtype) shows high activation of immune signaling pathways (CTLA4, natural killer (NK)-cell, Th1/Th2, NFKB, TNF, T-cell, JAK/STAT, ATR/BRCA), and cytokine signaling pathways, such as the interleukin (IL)-12 and IL7 pathways.
(4) The mesenchymal subtype (M subtype) exhibits significantly lower expression levels in the immune signal transduction pathway, unlike the IM subtype. The M subtype also shows profound activation of cell migration-related signaling pathways, extracellular matrix receptor interaction pathways, and cell differentiation pathways, such as the Wnt pathway, anaplastic lymphoma kinase pathway, and transforming growth factor (TGF)-β pathway. These molecular changes result in sarcomatous morphological features.
(5) The mesenchymal stem-like subtype (MSL subtype) features high expression of stemness-related pathways, including the inositol phosphate metabolism pathway, G-protein-coupled receptor pathway, and calcium signaling pathway. In addition, the MSL subtype displays high expression of angiogenesis pathways such as KDR, TEK, TIE1, and EPAS1, but very low expression of the proliferative pathway. Moreover, this subtype is accompanied by high expression of stem cell markers (ABCA8, PROCR, ENG, ALDHA1, PER1, ABCB1, TERT2IP, and BCL2) and mesenchymal stem cell-specific markers (BMP2, ENG, ITGV, KDR, NGFR, NTSE, PDGFR, THY1, and VCAM1).
(6) The luminal androgen receptor subtype (LAR subtype) displays high expression of hormonal-related signaling pathways, including steroid synthesis, porphyrin metabolism, and androgen/estrogen metabolism.
Subsequently, Burstein et al. [
16] proposed four molecular subgroups using gene expression profiling of 198 TNBC cases as follows.
(1) The LAR subgroup is characterized by gene expression for hormone-related signaling pathways, including prolactin signaling and estrogen/androgen metabolism. The tumors within this subgroup show androgen receptor, ER, prolactin, and ErbB4 signaling, but are ERα-negative by immunohistochemistry (IHC) staining.
ESR1 and other estrogen-regulated genes such as
PGR, FOXA, XBP1, and
GATA3 are expressed. This group demonstrates ER activation despite belonging to the category of ER-negative tumors by IHC, suggesting that traditional anti-estrogen therapies and anti-androgen therapies might be useful [
9].
(2) The mesenchymal subgroup shows activation of pathways related to the complement system, prothrombin activation, coagulation system, leukocyte extravasation signaling, and hepatic stellate cell activation signaling. In addition, this subgroup shows down-regulation of several signaling pathways, including cell cycle, mismatch repair, and hereditary breast carcinoma signaling pathways. In general, genes exclusive to osteocytes (OGN) and adipocytes (ADIPOQ, and PLIN1), and insulin-like growth factors (IGF-1) are highly expressed in this subgroup.
(3) The basal-like immune-suppressed (BLIS) subgroup is characterized by down-regulation of B cell, T cell, and NK cell immune-regulating pathways and cytokine pathways. Activation of the cell cycle and DNA repair-related signaling pathways has also been identified in this subgroup.
(4) The basal-like immune-activated (BLIA) subgroup, unlike the BLIS subgroup, shows up-regulation of B cell, T cell, and NK cell immune-regulating pathways. Additionally, the expression levels of STAT genes are elevated, and STAT transcription factor-mediated pathways are highly activated in this subgroup.
Recently, Liu et al. [
17] proposed four new subtypes after a classification analysis of the gene expression profile combined with mRNAs and long noncoding RNAs in 165 TNBC samples, as follows.
(1) The IM subtype has high expression levels of genes related to innate immune response T-cell co-stimulation and the immune response, such as CCR2, CXCL13, CXCL11, CD1C, CXCL10, and CCL5.
(2) The LAR subtype, despite being ER-negative on IHC staining, shows activation of the ER signaling pathway. Steroid biosynthesis, porphyrin metabolism, androgen/estrogen metabolism, and peroxisome proliferator-activated receptor signaling pathways are highly activated in this subtype.
(3) The mesenchymal-like subtype is enriched with various gene ontology category members and signaling pathways, such as extracellular matrix-receptor interactions, gap junctions, TGF-β, growth factor pathways, and the adipocytokine signaling pathway. Contrariwise, the mesenchymal-like subtype shows down-regulation of cell proliferation-related genes (cell division process, mitotic cell cycle, mitotic prometaphase, and mitosis).
(4) The BLIS subtype is highly enriched in cell division and cell cycle-related signaling pathways, including DNA replication, DNA repair, mitotic cell cycle, mitotic prometaphase, and the M phase of the mitotic cell cycle. The BLIS subtype has high expression of proliferation-related genes, such as
CENPF, BUB1, and
PRC1, but this subtype is characterized by significant down-regulation of immune cell signaling pathways, immune response, and complement activation processes. The TNBC subtypes discussed above are summarized in
Table 1.