2. Masoller C, Hong Y, Ayad S, Gustave F, Barland S, Pons AJ,
et al. Quantifying sudden changes in dynamical systems using symbolic networks. New J Phys 2015;17:023068.
7. Gamow G. Possible mathematical relation between deoxyribonucleic acid and proteins. Biol Meddel Kongel Danske Vidensk Selsk 1954;22:1–13.
8. Yockey HP, Platzman RL, Quastler H. Symposium on Information Theory in Biology, 1956 Oct 29-31, Gatlinburg, Tennessee. New York: Pergamon Press, 1958.
9. Gelfand IM. Speech at the meeting of Royal East Research, September 3, 2003. Matematicheskoe Prosveshenie 2004;3:13–14.
10. Scheffe H. The Analysis of Variance. Hoboken: John Wiley & Sons, 1999.
11. Blokh D, Stambler I. The application of information theory for the research of aging and aging-related diseases. Prog Neurobiol 2017;157:158–173.
13. Blokh D, Stambler I, Afrimzon E, Shafran Y, Korech E, Sandbank J,
et al. The information-theory analysis of Michaelis-Menten constants for detection of breast cancer. Cancer Detect Prev 2007;31:489–498.
14. Blokh D, Zurgil N, Stambler I, Afrimzon E, Shafran Y, Korech E,
et al. An information-theoretical model for breast cancer detection. Methods Inf Med 2008;47:322–327.
15. Blokh D, Stambler I, Afrimzon E, Platkov M, Shafran Y, Korech E,
et al. Comparative analysis of cell parameter groups for breast cancer detection. Comput Methods Programs Biomed 2009;94:239–249.
16. Gutierrez Diez PJ, Russo IH, Russo J. The Evolution of the Use of Mathematics in Cancer Research. New York: Springer, 2012.
18. Roman-Roldan R, Bernaola-Galvan P, Oliver JL. Application of information theory to DNA sequence analysis: a review. Pattern Recognit 1996;29:1187–1194.
19. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press, 1998.
20. Li W. Mutual information functions versus correlation functions. J Stat Phys 1990;60:823–837.
21. Atzmon G. Longevity Genes: A Blueprint for Aging. New York: Springer, 2015.
23. Glantz SA. Primer of Biostatistics. 4th ed. New York: McGraw-Hill, 1994.
24. Conover WJ. Practical Nonparametric Statistics. New York: Wiley-Interscience, 1999.
26. Joosse SA. BRCA1 and BRCA2: a common pathway of genome protection but different breast cancer subtypes. Nat Rev Cancer 2012;12:372.
27. Shan YS, Hsu HP, Lai MD, Hung YH, Wang CY, Yen MC,
et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett 2017;14:4517–4526.
28. Romagosa C, Simonetti S, Lopez-Vicente L, Mazo A, Lleonart ME, Castellvi J,
et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 2011;30:2087–2097.
29. Shimizu Y, Luk H, Horio D, Miron P, Griswold M, Iglehart D,
et al. BRCA1-IRIS overexpression promotes formation of aggressive breast cancers. PLoS One 2012;7:e34102.
30. Jin X, Wei Y, Xu F, Zhao M, Dai K, Shen R,
et al. SIRT1 promotes formation of breast cancer through modulating Akt activity. J Cancer 2018;9:2012–2023.
31. Ran LK, Chen Y, Zhang ZZ, Tao NN, Ren JH, Zhou L,
et al. SIRT6 overexpression potentiates apoptosis evasion in hepatocellular carcinoma via BCL2-associated X protein-dependent apoptotic pathway. Clin Cancer Res 2016;22:3372–3382.
33. Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: a renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2017;121:85–100.
35. Gaudette BT, Dwivedi B, Chitta KS, Poulain S, Powell D, Vertino P,
et al. Low expression of pro-apoptotic Bcl-2 family proteins sets the apoptotic threshold in Waldenstrom macroglobulinemia. Oncogene 2016;35:479–490.