1. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986;1:1077–1081.
4. Vineis P, Chatziioannou A, Cunliffe VT, Flanagan JM, Hanson M, Kirsch-Volders M,
et al. Epigenetic memory in response to environmental stressors. FASEB J 2017;31:2241–2251.
9. Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell 2017;65:8–24.
11. Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017;18:E2645.
14. Kang I, Kim Y, Tomas-Barberan FA, Espin JC, Chung S. Urolithin A, C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol Nutr Food Res 2016;60:1129–1138.
16. Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Hu J. Effect of curcumin on the diversity of gut microbiota in ovariectomized rats. Nutrients 2017;9:E1146.
18. Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 2014;16:45–65.
20. Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D,
et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 2015;22:861–873.
21. Inagaki T, Tachibana M, Magoori K, Kudo H, Tanaka T, Okamura M,
et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 2009;14:991–1001.
28. Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S,
et al. Reprogramming of the circadian clock by nutritional challenge. Cell 2013;155:1464–1478.
29. Aguilar-Arnal L, Sassone-Corsi P. Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. Proc Natl Acad Sci U S A 2015;112:6863–6870.
30. Navarro E, Funtikova AN, Fito M, Schroder H. Prenatal nutrition and the risk of adult obesity: long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem 2017;39:1–14.
31. Terasaka T, Otsuka F, Tsukamoto N, Nakamura E, Inagaki K, Toma K,
et al. Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells. Mol Cell Endocrinol 2013;381:8–15.
35. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F,
et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55–60.
39. DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F,
et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 2008;3:e3056.
41. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J,
et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017;81:e00036–17.
42. Kristensen K, Henriksen L. Cesarean section and disease associated with immune function. J Allergy Clin Immunol 2016;137:587–590.
43. Huh SY, Rifas-Shiman SL, Zera CA, Edwards JW, Oken E, Weiss ST,
et al. Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch Dis Child 2012;97:610–616.
44. Schlinzig T, Johansson S, Gunnar A, Ekstrom TJ, Norman M. Epigenetic modulation at birth - altered DNA-methylation in white blood cells after Caesarean section. Acta Paediatr 2009;98:1096–1099.
45. Almgren M, Schlinzig T, Gomez-Cabrero D, Gunnar A, Sundin M, Johansson S,
et al. Cesarean delivery and hematopoietic stem cell epigenetics in the newborn infant: implications for future health? Am J Obstet Gynecol 2014;211:502.
46. Arboleya S, Binetti A, Salazar N, Fernandez N, Solis G, Hernandez-Barranco A,
et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 2012;79:763–772.
54. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ,
et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 2015;6:7320.
55. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N,
et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013;339:211–214.
57. Vazquez-Gomez M, Garcia-Contreras C, Torres-Rovira L, Pesantez JL, Gonzalez-Anover P, Gomez-Fidalgo E,
et al. Polyphenols and IUGR pregnancies: maternal hydroxytyrosol supplementation improves prenatal and early-postnatal growth and metabolism of the offspring. PLoS One 2017;12:e0177593.
58. Wu S, Tian L. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (
Punica granatum). Molecules 2017;22:E1606.
59. Tomas-Barberan FA, Selma MV, Espin JC. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 2016;19:471–476.
60. Selma MV, Beltran D, Luna MC, Romo-Vaquero M, Garcia-Villalba R, Mira A,
et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front Microbiol 2017;8:1521.
61. Thakur VS, Gupta K, Gupta S. Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases. Int J Oncol 2012;41:353–361.
64. Whitt J, Woo V, Lee P, Moncivaiz J, Haberman Y, Denson L,
et al. Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice. Gastroenterology 2018;155:501–513.
65. Hsu CN, Hou CY, Lee CT, Chan JY, Tain YL. The interplay between maternal and post-weaning high-fat diet and gut microbiota in the developmental programming of hypertension. Nutrients 2019;11:E1982.
66. Parlee SD, MacDougald OA. Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. Biochim Biophys Acta 2014;1842:495–506.
67. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE,
et al. A core gut microbiome in obese and lean twins. Nature 2009;457:480–484.
70. Vatanen T, Kostic AD, d'Hennezel E, Siljander H, Franzosa EA, Yassour M,
et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 2016;165:1551.
71. Wankhade UD, Zhong Y, Kang P, Alfaro M, Chintapalli SV, Thakali KM,
et al. Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. PLoS One 2017;12:e0175675.
73. Chu DM, Antony KM, Ma J, Prince AL, Showalter L, Moller M,
et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med 2016;8:77.
74. Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R,
et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 2008;41:91–102.
77. Prescott SL, Wickens K, Westcott L, Jung W, Currie H, Black PN,
et al. Supplementation with
Lactobacillus rhamnosus or
Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factor-beta and immunoglobin A detection. Clin Exp Allergy 2008;38:1606–1614.