5. Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC,
et al. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 2017;27:1843–1858.
7. Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG, Sachsenberg T,
et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 2018;34:211–224.
8. Slansky JE, Spellman PT. Alternative splicing in tumors: a path to immunogenicity? N Engl J Med 2019;380:877–880.
9. Ben-Aroya S, Levanon EY. A-to-I RNA editing: an overlooked source of cancer mutations. Cancer Cell 2018;33:789–790.
11. Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T,
et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res 2014;24:1774–1786.
12. Vitting-Seerup K, Sandelin A. The landscape of isoform switches in human cancers. Mol Cancer Res 2017;15:1206–1220.
13. Climente-Gonzalez H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative splicing in cancer. Cell Rep 2017;20:2215–2226.
14. Liu Y, Gonzalez-Porta M, Santos S, Brazma A, Marioni JC, Aebersold R,
et al. Impact of alternative splicing on the human proteome. Cell Rep 2017;20:1229–1241.
15. Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A,
et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 2016;164:805–817.
16. Carazo F, Romero JP, Rubio A. Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors. Brief Bioinform 2018 Jan 29 [Epub].
https://doi.org/10.1093/bib/bby005.
17. Singh B, Eyras E. The role of alternative splicing in cancer. Transcription 2017;8:91–98.
20. Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS, Reynolds SM,
et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep 2018;23:270–281.
21. Shiraishi Y, Kataoka K, Chiba K, Okada A, Kogure Y, Tanaka H,
et al. A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res 2018;28:1111–1125.
23. Tian J, Wang Z, Mei S, Yang N, Yang Y, Ke J,
et al. CancerSplicingQTL: a database for genome-wide identification of splicing QTLs in human cancer. Nucleic Acids Res 2019;47:D909–D916.
24. Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P,
et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep 2018;23:282–296.
29. Hsiao YE, Bahn JH, Yang Y, Lin X, Tran S, Yang EW,
et al. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res 2018;28:812–823.
32. Picardi E, D'Erchia AM, Lo Giudice C, Pesole G. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res 2017;45:D750–D757.
34. Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-inosine RNA editing in health and disease. Antioxid Redox Signal 2018;29:846–863.
35. Xu X, Wang Y, Liang H. The role of A-to-I RNA editing in cancer development. Curr Opin Genet Dev 2018;48:51–56.
36. Peng X, Xu X, Wang Y, Hawke DH, Yu S, Han L,
et al. A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell 2018;33:817–828.
37. Roth SH, Danan-Gotthold M, Ben-Izhak M, Rechavi G, Cohen CJ, Louzoun Y,
et al. Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep 2018;23:50–57.
38. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER,
et al. pVAC-Seq: a genome-guided
in silico approach to identifying tumor neoantigens. Genome Med 2016;8:11.
39. Kim S, Kim HS, Kim E, Lee MG, Shin EC, Paik S,
et al. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann Oncol 2018;29:1030–1036.