1. GBD Diarrhoeal Diseases Collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis 2017;17:909–948.
2. Mathan MM, Mathan VI. Ultrastructural pathology of the rectal mucosa in Shigella dysentery. Am J Pathol 1986;123:25–38.
3. Keusch GT.
Shigella infections. Clin Gastroenterol 1979;8:645–662.
5. Parajuli P, Adamski M, Verma NK. Bacteriophages are the major drivers of
Shigella flexneri serotype 1c genome plasticity: a complete genome analysis. BMC Genomics 2017;18:722.
6. Ferreccio C, Prado V, Ojeda A, Cayyazo M, Abrego P, Guers L,
et al. Epidemiologic patterns of acute diarrhea and endemic
Shigella infections in children in a poor periurban setting in Santiago, Chile. Am J Epidemiol 1991;134:614–627.
7. von Seidlein L, Kim DR, Ali M, Lee H, Wang X, Thiem VD,
et al. A multicentre study of
Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med 2006;3:e353.
8. Nuesch-Inderbinen M, Heini N, Zurfluh K, Althaus D, Hachler H, Stephan R.
Shigella antimicrobial drug resistance mechanisms, 2004–2014. Emerg Infect Dis 2016;22:1083–1085.
9. Zhu Z, Zhou X, Li B, Wang S, Cheng F, Zhang J. Genomic analysis and resistance mechanisms in
Shigella flexneri 2a strain 301. Microb Drug Resist 2018;24:323–336.
10. Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G,
et al. Complete genome sequence and comparative genomics of
Shigella flexneri serotype 2a strain 2457T. Infect Immun 2003;71:2775–2786.
11. Desler C, Suravajhala P, Sanderhoff M, Rasmussen M, Rasmussen LJ.
In silico screening for functional candidates amongst hypothetical proteins. BMC Bioinformatics 2009;10:289.
12. Loewenstein Y, Raimondo D, Redfern OC, Watson J, Frishman D, Linial M,
et al. Protein function annotation by homology-based inference. Genome Biol 2009;10:207.
13. Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Detection of functionally important regions in “hypothetical proteins” of known structure. Structure 2008;16:1755–1763.
14. Kumar K, Prakash A, Tasleem M, Islam A, Ahmad F, Hassan MI. Functional annotation of putative hypothetical proteins from
Candida dubliniensis
. Gene 2014;543:93–100.
15. Lubec G, Afjehi-Sadat L, Yang JW, John JP. Searching for hypothetical proteins: theory and practice based upon original data and literature. Prog Neurobiol 2005;77:90–127.
16. Shahbaaz M, Ahmad F, Imtaiyaz Hassan M. Structure-based functional annotation of putative conserved proteins having lyase activity from
Haemophilus influenzae
. 3 Biotech 2015;5:317–336.
17. Sinha A, Ahmad F, Hassan MI. Structure based functional annotation of putative conserved proteins from
Treponema pallidum: search for a potential drug target. Lett Drug Des Discov 2015;12:46–59.
18. Adams MA, Suits MD, Zheng J, Jia Z. Piecing together the structure-function puzzle: experiences in structure-based functional annotation of hypothetical proteins. Proteomics 2007;7:2920–2932.
20. Gazi MA, Kibria MG, Mahfuz M, Islam MR, Ghosh P, Afsar MN,
et al. Functional, structural and epitopic prediction of hypothetical proteins of
Mycobacterium tuberculosis H37Rv: an
in silico approach for prioritizing the targets. Gene 2016;591:442–455.
21. Metz CE. Basic principles of ROC analysis. Semin Nucl Med 1978;8:283–298.
22. Anandakumar S, Shanmughavel P. Computational annotation for hypothetical proteins of Mycobacterium tuberculosis
. J Comput Sci Syst Biol 2008;1:50–62.
27. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M,
et al. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 2007;35:D237–D240.
30. Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 2012;40:D302–D305.
32. Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen
Mycobacterium abscessus: a novel hierarchical
in silico approach. PLoS One 2013;8:e59126.
33. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein sub-cellular localization. Proteins 2006;64:643–651.
36. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–580.
43. Sillitoe I, Cuff AL, Dessailly BH, Dawson NL, Furnham N, Lee D,
et al. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Res 2013;41:D490–D498.
45. Rappoport N, Karsenty S, Stern A, Linial N, Linial M. ProtoNet 6.0: organizing 10 million protein sequences in a compact hierarchical family tree. Nucleic Acids Res 2012;40:D313–D320.
46. Xu D, Xu Y, Uberbacher EC. Computational tools for protein modeling. Curr Protein Pept Sci 2000;1:1–21.
48. Shen HB, Chou KC. Predicting protein fold pattern with functional domain and sequential evolution information. J Theor Biol 2009;256:441–446.
49. Baron C, Coombes B. Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect Disord Drug Targets 2007;7:19–27.
52. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,
et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011;39:D561–D568.
53. Eng J.
ROC analysis: web-based calculator for ROC curves Baltimore: Johns Hopkins University, 2006. Accessed 2018 Sep 1. Available from:
http://www.jrocfit.org
.
55. Delucia AM, Six DA, Caughlan RE, Gee P, Hunt I, Lam JS,
et al. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in
Pseudomonas aeruginosa PAO1. MBio 2011;2:e00142–11.
58. Morishita R, Kawagoshi A, Sawasaki T, Madin K, Ogasawara T, Oka T,
et al. Ribonuclease activity of rat liver perchloric acid-soluble protein, a potent inhibitor of protein synthesis. J Biol Chem 1999;274:20688–20692.
59. Lambrecht JA, Flynn JM, Downs DM. Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions. J Biol Chem 2012;287:3454–3461.
60. Schmitz G, Downs DM. Reduced transaminase B (IlvE) activity caused by the lack of yjgF is dependent on the status of threonine deaminase (IlvA) in
Salmonella enterica serovar Typhimurium. J Bacteriol 2004;186:803–810.
62. Fry J, Wood M, Poole PS. Investigation of myo-inositol catabolism in
Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 2001;14:1016–1025.
63. Bollinger JM Jr, Kwon DS, Huisman GW, Kolter R, Walsh CT. Glutathionylspermidine metabolism in
Escherichia coli: purification, cloning, overproduction, and characterization of a bi-functional glutathionylspermidine synthetase/amidase. J Biol Chem 1995;270:14031–14041.
64. Ejim LJ, D’Costa VM, Elowe NH, Loredo-Osti JC, Malo D, Wright GD. Cystathionine beta-lyase is important for virulence of
Salmonella enterica serovar Typhimurium. Infect Immun 2004;72:3310–3314.
65. Gerdes K, Wagner EG. RNA antitoxins. Curr Opin Microbiol 2007;10:117–124.
67. Kawano M. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from
E. coli: hok/sok, ldr/rdl, symE/symR. RNA Biol 2012;9:1520–1527.
68. Ruggeri ZM, Ware J. von Willebrand factor. FASEB J 1993;7:308–316.
69. Ahmad F, Jan R, Kannan M, Obser T, Hassan MI, Oyen F,
et al. Characterisation of mutations and molecular studies of type 2 von Willebrand disease. Thromb Haemost 2013;109:39–46.
70. Naqvi AA, Shahbaaz M, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of
Treponema pallidum ssp.
pallidum
. PLoS One 2015;10:e0124177.
71. Colombatti A, Bonaldo P, Doliana R. Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins. Matrix 1993;13:297–306.
72. Tavernarakis N, Driscoll M, Kyrpides NC. The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 1999;24:425–427.
74. Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of
Escherichia coli
. Proc Natl Acad Sci U S A 2006;103:11754–11759.
75. Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F,
et al. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun 2013;81:629–635.
76. Singer HM, Kuhne C, Deditius JA, Hughes KT, Erhardt M. The
Salmonella Spi1 virulence regulatory protein HilD directly activates transcription of the flagellar master operon flhDC. J Bacteriol 2014;196:1448–1457.
77. Kowalski JC, Belfort M, Stapleton MA, Holpert M, Dansereau JT, Pietrokovski S,
et al. Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res 1999;27:2115–2125.
78. Van Roey P, Meehan L, Kowalski JC, Belfort M, Derbyshire V. Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat Struct Biol 2002;9:806–811.
80. Shu W, Liu J, Ji H, Lu M. Core structure of the outer membrane lipoprotein from
Escherichia coli at 1.9 A resolution. J Mol Biol 2000;299:1101–1112.
81. Rothberg JM, Jacobs JR, Goodman CS, Artavanis-Tsakonas S. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev 1990;4:2169–2187.
82. Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect Immun 2011;79:548–561.
84. Saurin W, Hofnung M, Dassa E. Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 1999;48:22–41.
86. Ibanez-Ruiz M, Robbe-Saule V, Hermant D, Labrude S, Norel F. Identification of RpoS (sigma(S))-regulated genes in
Salmonella enterica serovar Typhimurium. J Bacteriol 2000;182:5749–5756.
87. Peterson PA, Rask L, Ostberg L, Andersson L, Kamwendo F, Pertoft H. Studies on the transport and cellular distribution of vitamin A in normal and vitamin A-deficient rats with special reference to the vitamin A-binding plasma protein. J Biol Chem 1973;248:4009–4022.
88. Minailiuc OM, Vavelyuk O, Gandhi S, Hung MN, Cygler M, Ekiel I. NMR structure of YcgL, a conserved protein from
Escherichia coli representing the DUF709 family, with a novel alpha/beta/alpha sandwich fold. Proteins 2007;66:1004–1007.
89. Livorsi DJ, Stenehjem E, Stephens DS. Virulence factors of gram-negative bacteria in sepsis with a focus on Neisseria meningitidis. In: Sepsis: Pro-Inflammatory and Anti-Inflammatory Responses (Herwald H, Egesten A, eds.). Basel: Karger Publishers, 2011. pp. 31–47.
90. Marra A. Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. Drugs R D 2006;7:1–16.