1. Andreini C, Bertini I, Rosato A. A hint to search for metalloproteins in gene banks.
Bioinformatics 2004;20:1373–1380.
2. Clapp LA, Siddons CJ, Whitehead JR, VanDerveer DG, Rogers RD, Griffin ST,
et al. Factors controlling metal-ion selectivity in the binding sites of calcium-binding proteins: the metal-binding properties of amide donors. A crystallographic and thermodynamic study.
Inorg Chem 2005;44:8495–8502.
3. Kaur-Atwal G, Weston DJ, Green PS, Crosland S, Bonner PL, Creaser CS. On-line capillary column immobilised metal affinity chromatography/electrospray ionisation mass spectrometry for the selective analysis of histidine-containing peptides.
J Chromatogr B Analyt Technol Biomed Life Sci 2007;857:240–245.
4. Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M,
et al. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis.
Proteomics 2007;7:351–360.
5. Osborn MT, Herrin K, Buzen FG, Hurlburt BK, Chambers TC. Electrophoretic mobility shift assay coupled with immunoblotting for the identification of DNA-binding proteins.
Biotechniques 1999;27:887–890. 892.
6. Smith MF Jr, Delbary-Gossart S. Electrophoretic mobility shift assay (EMSA).
Methods Mol Med 2001;50:249–257.
7. Korshin G, Chow CW, Fabris R, Drikas M. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights.
Water Res 2009;43:1541–1548.
8. Nigg PE, Pavlovic J. Characterization of multi-subunit protein complexes of human MxA using non-denaturing polyacrylamide gel-electrophoresis.
J Vis Exp 2016;(116):e54683.
9. Jensen MR, Petersen G, Lauritzen C, Pedersen J, Led JJ. Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation.
Biochemistry 2005;44:11014–11023.
10. Rondeau P, Sers S, Jhurry D, Cadet F. Sugar interaction with metals in aqueous solution: indirect determination from infrared and direct determination from nuclear magnetic resonance spectroscopy.
Appl Spectrosc 2003;57:466–472.
11. Zhu D, Herbert BE, Schlautman MA, Carraway ER. Characterization of cation-pi interactions in aqueous solution using deuterium nuclear magnetic resonance spectroscopy.
J Environ Qual 2004;33:276–284.
12. Butler M, Cabrera GM. A mass spectrometry-based method for differentiation of positional isomers of monosubstituted pyrazine N-oxides using metal ion complexes.
J Mass Spectrom 2015;50:136–144.
13. Lin CT, Lin KL, Yang CH, Chung IF, Huang CD, Yang YS. Protein metal binding residue prediction based on neural networks.
Int J Neural Syst 2005;15:71–84.
14. Passerini A, Punta M, Ceroni A, Rost B, Frasconi P. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.
Proteins 2006;65:305–316.
16. Deng H, Chen G, Yang W, Yang JJ. Predicting calcium-binding sites in proteins: a graph theory and geometry approach.
Proteins 2006;64:34–42.
17. Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L. Prediction of water and metal binding sites and their affinities by using the Fold-X force field.
Proc Natl Acad Sci U S A 2005;102:10147–10152.
18. Chen Z, Wang Y, Zhai YF, Song J, Zhang Z. ZincExplorer: an accurate hybrid method to improve the prediction of zinc-binding sites from protein sequences.
Mol Biosyst 2013;9:2213–2222.
19. Levy R, Edelman M, Sobolev V. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates.
Proteins 2009;76:365–374.
21. Murphy LR, Wallqvist A, Levy RM. Simplified amino acid alphabets for protein fold recognition and implications for folding.
Protein Eng 2000;13:149–152.
22. Parisi G, Echave J. Structural constraints and emergence of sequence patterns in protein evolution.
Mol Biol Evol 2001;18:750–756.
23. Tainer JA, Roberts VA, Getzoff ED. Metal-binding sites in proteins.
Curr Opin Biotechnol 1991;2:582–591.
24. Zuo Y, Lv Y, Wei Z, Yang L, Li G, Fan G. iDPF-PseRAAAC: a web-server for identifying the defensin peptide family and subfamily using pseudo reduced amino acid alphabet composition.
PLoS One 2015;10:e0145541.
25. Lu MF, Xie Y, Zhang YJ, Xing XY. Effects of cofactors on conformation transition of random peptides consisting of a reduced amino acid alphabet.
Protein Pept Lett 2015;22:579–585.
26. Liu B, Xu J, Lan X, Xu R, Zhou J, Wang X,
et al. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition.
PLoS One 2014;9:e106691.
27. Feng PM, Chen W, Lin H, Chou KC. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition.
Anal Biochem 2013;442:118–125.
28. Chakrabarti P, Pal D. The interrelationships of side-chain and main-chain conformations in proteins.
Prog Biophys Mol Biol 2001;76:1–102.
29. Etchebest C, Benros C, Bornot A, Camproux AC, de Brevern AG. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.
Eur Biophys J 2007;36:1059–1069.
30. Weathers EA, Paulaitis ME, Woolf TB, Hoh JH. Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein.
FEBS Lett 2004;576:348–352.
31. The UniProt Consortium. UniProt: the universal protein knowledgebase.
Nucleic Acids Res 2017;45:D158–D169.
32. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.
Bioinformatics 2006;22:1658–1659.
33. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, UniProt Consortium. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches.
Bioinformatics 2015;31:926–932.
34. Cohen G, Hilario M, Sax H, Hugonnet S, Geissbuhler A. Learning from imbalanced data in surveillance of nosocomial infection.
Artif Intell Med 2006;37:7–18.
35. Cannata N, Toppo S, Romualdi C, Valle G. Simplifying amino acid alphabets by means of a branch and bound algorithm and substitution matrices.
Bioinformatics 2002;18:1102–1108.
36. Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH. Hydrophobicity of amino acid residues in globular proteins.
Science 1985;229:834–838.
37. Zheng C, Wang M, Takemoto K, Akutsu T, Zhang Z, Song J. An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins.
PLoS One 2012;7:e49716.
38. Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka.
Bioinformatics 2004;20:2479–2481.
39. Smith TC, Frank E. Introducing machine learning concepts with WEKA.
Methods Mol Biol 2016;1418:353–378.
40. Varma S, Simon R. Bias in error estimation when using cross-validation for model selection.
BMC Bioinformatics 2006;7:91.
41. Sahiner B, Chan HP, Hadjiiski L. Classifier performance prediction for computer-aided diagnosis using a limited dataset.
Med Phys 2008;35:1559–1570.
43. Mandal M, Mukhopadhyay A, Maulik U. Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou’s PseAAC.
Med Biol Eng Comput 2015;53:331–344.