2. Koolman J, Roehm KH. Color Atlas of Biochemistry. 2nd ed. Stuttgart: Thieme, 2005.
3. Shi Y, Hu FB. The global implications of diabetes and cancer. Lancet 2014;383:1947–1948.
4. Mohsin F, Craig ME, Cusumano J, Chan AK, Hing S, Lee JW,
et al. Discordant trends in microvascular complications in adolescents with type 1 diabetes from 1990 to 2002. Diabetes Care 2005;28:1974–1980.
5. Chistiakov DA, Tyurina I. Current strategies and perspectives in insulin gene therapy for diabetes. Expert Rev Endocrinol Metab 2007;2:27–34.
6. Castellanos-Serra LR, Hardy E, Ubieta R, Vispo NS, Fernandez C, Besada V,
et al. Expression and folding of an interleukin-2-proinsulin fusion protein and its conversion into insulin by a single step enzymatic removal of the C-peptide and the N-terminal fused sequence. FEBS Lett 1996;378:171–176.
7. Min CK, Son YJ, Kim CK, Park SJ, Lee JW. Increased expression, folding and enzyme reaction rate of recombinant human insulin by selecting appropriate leader peptide. J Biotechnol 2011;151:350–356.
8. Malik A, Jenzsch M, Lubbert A, Rudolph R, Söhling B. Periplasmic production of native human proinsulin as a fusion to
E. coli ecotin. Protein Expr Purif 2007;55:100–111.
9. Chen JQ, Zhang HT, Hu MH, Tang JG. Production of human insulin in an
E. coli system with Met-Lys-human proinsulin as the expressed precursor. Appl Biochem Biotechnol 1995;55:5–15.
10. Nilsson J, Jonasson P, Samuelsson E, Ståhl S, Uhlén M. Integrated production of human insulin and its C-peptide. J Biotechnol 1996;48:241–250.
11. Winter J, Lilie H, Rudolph R. Renaturation of human proinsulin: a study on refolding and conversion to insulin. Anal Biochem 2002;310:148–155.
12. Yang Y, Hua QX, Liu J, Shimizu EH, Choquette MH, Mackin RB,
et al. Solution structure of proinsulin: connecting domain flexibility and prohormone processing. J Biol Chem 2010;285:7847–7851.
13. Baker EN, Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG,
et al. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci 1988;319:369–456.
15. Zhang C, Mortuza SM, He B, Wang Y, Zhang Y. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12. Proteins 2017 Oct 30 [Epub].
https://doi.org/10.1002/prot.25414.
16. Yang J, Zhang W, He B, Walker SE, Zhang H, Govindarajoo B,
et al. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade. Proteins 2016;84( Suppl 1):233–246.
17. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B,
et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1:19–25.