1. Muiños-Gimeno M, Guidi M, Kagerbauer B, Martín-Santos R, Navinés R, Alonso P,
et al. Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat 2009;30:1062–1071.
2. Yang P, Tang R, Zhu J, Zou L, Wu R, Zhou H,
et al. A functional variant at miR-24 binding site in B7-H2 alters susceptibility to gastric cancer in a Chinese Han population. Mol Immunol 2013;56:98–103.
3. Minguzzi S, Selcuklu SD, Spillane C, Parle-McDermott A. An NTD-associated polymorphism in the 3' UTR of MTHFD1L can affect disease risk by altering miRNA binding. Hum Mutat 2014;35:96–104.
6. Lee SY, Choi JE, Jeon HS, Hong MJ, Choi YY, Kang HG,
et al. A genetic variation in microRNA target site of KRT81 gene is associated with survival in early-stage non-small-cell lung cancer. Ann Oncol 2015;26:1142–1148.
7. Schoof CR, Botelho EL, Izzotti A, Vasques Ldos R. MicroRNAs in cancer treatment and prognosis. Am J Cancer Res 2012;2:414–433.
8. Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, Nitsch R,
et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech Dev 1998;77:95–141.
9. Han HJ, Kim DH, Lee DC, Kim SM, Park SI. Pathogenicity of
Edwardsiella tarda to olive flounder,
Paralichthys olivaceus (Temminck & Schlegel). J Fish Dis 2006;29:601–609.
10. Wang HR, Hu YH, Zhang WW, Sun L. Construction of an attenuated
Pseudomonas fluorescens strain and evaluation of its potential as a cross-protective vaccine. Vaccine 2009;27:4047–4055.
11. Nho SW, Shin GW, Park SB, Jang HB, Cha IS, Ha MA,
et al. Phenotypic characteristics of
Streptococcus iniae and
Streptococcus parauberis isolated from olive flounder (
Paralichthys olivaceus). FEMS Microbiol Lett 2009;293:20–27.
12. Dunham RA. Aquaculture and Fisheries Biotechnology: Genetic Approaches. Wallingford: CABI Publishing, 2004.
13. Kim WJ, Kim KK, Han HS, Nam BH, Kim YO, Kong HJ,
et al. Population structure of the olive flounder (
Paralichthys olivaceus) in Korea inferred from microsatellite marker analysis. J Fish Biol 2010;76:1958–1971.
14. Slatkin M. Gene flow and the geographic structure of natural populations. Science 1987;236:787–792.
15. Zhang C. Novel functions for small RNA molecules. Curr Opin Mol Ther 2009;11:641–651.
16. Zhang H, Fu Y, Shi Z, Su Y, Zhang J. miR-17 is involved in Japanese Flounder (
Paralichthys olivaceus) development by targeting the Cdc42 mRNA. Comp Biochem Physiol B Biochem Mol Biol 2016;191:163–170.
17. Fu Y, Shi Z, Wang G, Zhang J, Li W, Jia L. Expression of let-7 microRNAs that are involved in Japanese flounder (
Paralichthys olivaceus) metamorphosis. Comp Biochem Physiol B Biochem Mol Biol 2013;165:106–113.
18. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I,
et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008;13:272–286.
19. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F,
et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257–2261.
20. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N,
et al. Genomic and epigenetic alterations deregulate micro-RNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 2008;105:7004–7009.
21. Mascellani N, Tagliavini L, Gamberoni G, Rossi S, Marchesini J, Taccioli C, et al. Using miRNA expression data for the study of human cancer. Minerva Biotechnol 2008;20:23–30.
22. Rath SN, Das D, Konkimalla VB, Pradhan SK.
In silico study of miRNA based gene regulation, involved in solid cancer, by the assistance of argonaute protein. Genomics Inform 2016;14:112–124.
23. Maffioletti E, Cattaneo A, Rosso G, Maina G, Maj C, Gennarelli M,
et al. Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J Affect Disord 2016;200:250–258.
24. Jo A, Im J, Lee HE, Jang D, Nam GH, Mishra A,
et al. Evolutionary conservation and expression of miR-10a-3p in olive flounder and rock bream. Gene 2017;628:16–23.
25. Wang H, Bei Y, Shen S, Huang P, Shi J, Zhang J,
et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol 2016;94:43–53.
26. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z,
et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004;18:1165–1178.
27. Cybula M, Wieteska Ł, Józefowicz-Korczyńska M, Karbownik MS, Grzelczyk WL, Szemraj J. New miRNA expression abnormalities in laryngeal squamous cell carcinoma. Cancer Biomark 2016;16:559–568.
28. Romay MC, Che N, Becker SN, Pouldar D, Hagopian R, Xiao X,
et al. Regulation of NF-κB signaling by oxidized glycerophospholipid and IL-1β induced miRs-21-3p and -27a-5p in human aortic endothelial cells. J Lipid Res 2015;56:38–50.
29. Zhou XH, Ren YM, Wei ZJ, Lin W, Fan BY, Liu S,
et al. Differential expression of miRNAs in Osborne’s ligament of cubital tunnel syndrome. Mol Med Rep 2017;16:687–695.
30. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115:787–798.
31. Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI. U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 2001;276:33111–33120.
32. Pushkarsky T, Yurchenko V, Vanpouille C, Brichacek B, Vaisman I, Hatakeyama S,
et al. Cell surface expression of CD147/EMMPRIN is regulated by cyclophilin 60. J Biol Chem 2005;280:27866–27871.
33. Belfiori-Carrasco LF, Marcora MS, Bocai NI, Ceriani MF, Morelli L, Castaño EM. A novel genetic screen identifies modifiers of age-dependent amyloid beta toxicity in the
Drosophila brain. Front Aging Neurosci 2017;9:61.
35. Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC,
et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer 2015;14:36.
36. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU,
et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 1997;278:1957–1960.
37. Ranganathan R, Lu KP, Hunter T, Noel JP. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 1997;89:875–886.
38. Fanghanel J, Akiyama H, Uchida C, Uchida T. Comparative analysis of enzyme activities and mRNA levels of peptidyl prolyl cis/trans isomerases in various organs of wild type and Pin1-/- mice. FEBS Lett 2006;580:3237–3245.