1. Caltagirone S, Ruggeri M, Aschero S, Gilestro M, Oddolo D, Gay F,
et al. Chromosome 1 abnormalities in elderly patients with newly diagnosed multiple myeloma treated with novel therapies. Haematologica 2014;99:1611–1617.
3. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011;364:1046–1060.
5. Kumar SK, Rajkumar SV. The current status of minimal residual disease assessment in myeloma. Leukemia 2014;28:239–240.
7. Anderson KC, Alsina M, Atanackovic D, Biermann JS, Chandler JC, Costello C,
et al. NCCN guidelines insights: multiple myeloma, version 3.2016. J Natl Compr Canc Netw 2016;14:389–400.
8. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK,
et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009;23:2210–2221.
9. Munshi NC, Anderson KC, Bergsagel PL, Shaughnessy J, Palumbo A, Durie B,
et al. Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood 2011;117:4696–4700.
10. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005;23:6333–6338.
11. Weissbach S, Langer C, Puppe B, Nedeva T, Bach E, Kull M,
et al. The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. Br J Haematol 2015;169:57–70.
12. Lim JH, Seo EJ, Park CJ, Jang S, Chi HS, Suh C,
et al. Cytogenetic classification in Korean multiple myeloma patients: prognostic significance of hyperdiploidy with 47-50 chromosomes and the number of structural abnormalities. Eur J Haematol 2014;92:313–320.
13. Morishita M, Muramatsu T, Suto Y, Hirai M, Konishi T, Hayashi S,
et al. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget 2016;7:10182–10192.
14. Rausch T, Jones DT, Zapatka M, Stutz AM, Zichner T, Weischenfeldt J,
et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with
TP53 mutations. Cell 2012;148:59–71.
16. Furgason JM, Koncar RF, Michelhaugh SK, Sarkar FH, Mittal S, Sloan AE,
et al. Whole genome sequence analysis links chromothripsis to
EGFR,
MDM2,
MDM4, and
CDK4 amplification in glioblastoma. Oncoscience 2015;2:618–628.
17. Forment JV, Kaidi A, Jackson SP. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 2012;12:663–670.
18. Korbel JO, Campbell PJ. Criteria for inference of chromothripsis in cancer genomes. Cell 2013;152:1226–1236.
19. McDermott DH, Gao JL, Liu Q, Siwicki M, Martens C, Jacobs P,
et al. Chromothriptic cure of WHIM syndrome. Cell 2015;160:686–699.
20. Hirsch D, Kemmerling R, Davis S, Camps J, Meltzer PS, Ried T,
et al. Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. Cancer Res 2013;73:1454–1460.
21. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I,
et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012;483:589–593.
23. Bao HY, Wang LJ, Yang Y, Cai Z. TLR4 signals are involved in multiple myeloma cell proliferation and apoptosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2009;38:465–469.
24. Bolzoni M, Donofrio G, Storti P, Guasco D, Toscani D, Lazzaretti M,
et al. Myeloma cells inhibit non-canonical wnt co-receptor ror2 expression in human bone marrow osteoprogenitor cells: effect of wnt5a/ror2 pathway activation on the osteogenic differentiation impairment induced by myeloma cells. Leukemia 2013;27:451–463.
26. Mannava S, Zhuang D, Nair JR, Bansal R, Wawrzyniak JA, Zucker SN,
et al. KLF9 is a novel transcriptional regulator of bortezomib- and LBH589-induced apoptosis in multiple myeloma cells. Blood 2012;119:1450–1458.
28. Silvestris F, Cafforio P, De Matteo M, Calvani N, Frassanito MA, Dammacco F. Negative regulation of the osteoblast function in multiple myeloma through the repressor gene
E4BP4 activated by malignant plasma cells. Clin Cancer Res 2008;14:6081–6091.
29. Tam M, Lin P, Hu P, Lennon PA. Examining Hedgehog pathway genes
GLI3,
SHH, and
PTCH1 and the p53 target
GLIPR1/GLIPR1L1/GLIPR1L2 gene cluster using fluorescence in situ hybridization uncovers
GLIPR1/GLIPR1L1/GLIPR1L2 deletion in 9% of patients with multiple myeloma. J Assoc Genet Technol 2010;36:111–114.
30. Yu T, Liu L, Zhang S, Hao M, Qiu L. PHF19 promotes drug resistance through EZH2 inactivation in multiple myeloma. Blood 2016;128:4495.
31. Yang Y, Zhou W, Xia J, Gu Z, Wendlandt E, Zhan X,
et al. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget 2014;5:11986–11997.
32. Brigaudeau C, Trimoreau F, Gachard N, Rouzier E, Jaccard A, Bordessoule D,
et al. Cytogenetic study of 30 patients with multiple myeloma: comparison of 3 and 6 day bone marrow cultures stimulated or not with cytokines by using a miniaturized karyotypic method. Br J Haematol 1997;96:594–600.
33. Fabris S, Ronchetti D, Agnelli L, Baldini L, Morabito F, Bicciato S,
et al. Transcriptional features of multiple myeloma patients with chromosome 1q gain. Leukemia 2007;21:1113–1116.
34. Inoue J, Otsuki T, Hirasawa A, Imoto I, Matsuo Y, Shimizu S,
et al. Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am J Pathol 2004;165:71–81.
35. Mani M, Carrasco DE, Zhang Y, Takada K, Gatt ME, Dutta-Simmons J,
et al. BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer Res 2009;69:7577–7586.
36. Yasmeen R, Meyers JM, Alvarez CE, Thomas JL, Bonnegarde-Bernard A, Alder H,
et al. Aldehyde dehydrogenase-1a1 induces oncogene suppressor genes in B cell populations. Biochim Biophys Acta 2013;1833:3218–3227.
37. Shaughnessy JD Jr, Qu P, Usmani S, Heuck CJ, Zhang Q, Zhou Y,
et al. Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially
PSMD4, as novel high-risk feature in myeloma treated with Total Therapy 3. Blood 2011;118:3512–3524.
38. Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD,
et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 2010;116:e56–e65.
39. Xu X, He Y, Miao X, Wu Y, Han J, Wang Q,
et al. Cell adhesion induces overexpression of chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) and contributes to cell adhesion-mediated drug resistance (CAM-DR) in multiple myeloma cells. Leuk Res 2016;47:54–62.
40. Dvorakova K, Payne CM, Tome ME, Briehl MM, Vasquez MA, Waltmire CN,
et al. Molecular and cellular characterization of imexon-resistant RPMI8226/I myeloma cells. Mol Cancer Ther 2002;1:185–195.
41. Pan YZ, Wang X, Bai H, Wang CB, Zhang Q, Xi R. Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin. Genet Mol Res 2015;14:5621–5629.
43. Munshi NC, Anderson KC. Advances in Biology and Therapy of Multiple Myeloma. Vol. 1. Basic Science. New York: Springer-Verlag, 2013.
44. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer 2012;12:335–348.
45. Stevens-Kroef M, Weghuis DO, Croockewit S, Derksen L, Hooijer J, Elidrissi-Zaynoun N,
et al. High detection rate of clinically relevant genomic abnormalities in plasma cells enriched from patients with multiple myeloma. Genes Chromosomes Cancer 2012;51:997–1006.