1. Holland GN. Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol 2003;136:973–988. PMID:
14644206.
2. Thirumudi I, Vetrivel U, Mahalakshmi B, K LT, Hn M. Insights on drug targeting of Toxoplasma gondii host invasion proteins: a review. Asian J Pharm Clin Res 2015;8:52–57.
3. Tenter AM, Heckeroth AR, Weiss LM.
Toxoplasma gondii: from animals to humans. Int J Parasitol 2000;30:1217–1258. PMID:
11113252.
4. Kim K, Weiss LM.
Toxoplasma gondii: the model apicomplexan. Int J Parasitol 2004;34:423–432. PMID:
15003501.
5. Hehl AB, Basso WU, Lippuner C, Ramakrishnan C, Okoniewski M, Walker RA,
et al. Asexual expansion of
Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genomics 2015;16:66. PMID:
25757795.
6. Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites: a moving junction between erythrocyte and parasite. J Cell Biol 1978;77:72–82. PMID:
96121.
7. Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 2005;1:e17. PMID:
16244709.
8. Besteiro S, Dubremetz JF, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol 2011;13:797–805. PMID:
21535344.
9. Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog 2011;7:e1002007. PMID:
21423671.
10. Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M. Export of a
Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009;5:e1000309. PMID:
19247437.
11. Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J,
et al. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 2011;7:e1001276. PMID:
21347343.
12. Henderson KA, Streltsov VA, Coley AM, Dolezal O, Hudson PJ, Batchelor AH,
et al. Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 2007;15:1452–1466. PMID:
17997971.
13. Crawford J, Tonkin ML, Grujic O, Boulanger MJ. Structural characterization of apical membrane antigen 1 (AMA1) from Toxoplasma gondii. J Biol Chem 2010;285:15644–15652. PMID:
20304917.
14. Harvey KL, Yap A, Gilson PR, Cowman AF, Crabb BS. Insights and controversies into the role of the key apicomplexan invasion ligand, apical membrane antigen 1. Int J Parasitol 2014;44:853–857. PMID:
25157917.
15. Collins CR, Withers-Martinez C, Hackett F, Blackman MJ. An inhibitory antibody blocks interactions between components of the malarial invasion machinery. PLoS Pathog 2009;5:e1000273. PMID:
19165323.
16. Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J,
et al. Interaction between
Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 2010;285:14815–14822. PMID:
20228060.
17. Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J,
et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 2011;333:463–467. PMID:
21778402.
18. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA,
et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177–6196. PMID:
17034125.
19. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics 2000;16:747–748. PMID:
11099264.
20. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015;10:449–461. PMID:
25835573.
21. DuBay KH, Hall ML, Hughes TF, Wu C, Reichman DR, Friesner RA. Accurate force field development for modeling conjugated polymers. J Chem Theory Comput 2012;8:4556–4569. PMID:
26605615.
22. Barth E, Kuczera K, Leimkuhler B, Skeel RD. Algorithms for constrained molecular dynamics. J Comput Chem 1995;16:1192–1209.
23. Bulatov VV, Rhee M, Cai W. Periodic boundary conditions for dislocation dynamics simulations in three dimensions. MRS Proc 2000;653:Z1–Z3.
24. Harvey MJ, De Fabritiis G. An implementation of the smooth particle mesh Ewald method on GPU hardware. J Chem Theory Comput 2009;5:2371–2377. PMID:
26616618.
25. Berendsen HJ, Postma JP, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984;81:3684–3690.
26. Damm KL, Carlson HA. Gaussian-weighted RMSD superposition of proteins: a structural comparison for flexible proteins and predicted protein structures. Biophys J 2006;90:4558–4573. PMID:
16565070.
27. Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 1994;235:625–634. PMID:
8289285.
28. Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics 2012;28:2431–2440. PMID:
22796957.
29. Lobanov MY, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of protein structure compactness. Mol Biol 2008;42:623–628.
30. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK,
et al. Binding of
Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 2011;108:13275–13280. PMID:
21788485.
32. Tonkin ML, Crawford J, Lebrun ML, Boulanger MJ. Babesia divergens and
Neospora caninum apical membrane antigen 1 structures reveal selectivity and plasticity in apicomplexan parasite host cell invasion. Protein Sci 2013;22:114–127. PMID:
23169033.
33. Carugo O. How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. J Appl Cryst 2003;36:125–128.
34. Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2013;113:2100–2138. PMID:
23145968.
35. Scrutton NS, Raine AR. Cation-π bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochem J 1996;319:1–8. PMID:
8870640.