1. Richette P, Bardin T. Gout. Lancet 2010;375:318–328. PMID:
19692116.
2. Karns R, Zhang G, Sun G, Rao Indugula S, Cheng H, Havas-Augustin D,
et al. Genome-wide association of serum uric acid concentration: replication of sequence variants in an island population of the Adriatic coast of Croatia. Ann Hum Genet 2012;76:121–127. PMID:
22229870.
3. Li WD, Jiao H, Wang K, Zhang CK, Glessner JT, Grant SF,
et al. A genome wide association study of plasma uric acid levels in obese cases and never-overweight controls. Obesity (Silver Spring) 2013;21:E490–E494. PMID:
23703922.
4. Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F,
et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet 2012;44:904–909. PMID:
22797727.
5. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M,
et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 2009;5:e1000504. PMID:
19503597.
6. Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F,
et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008;372:1953–1961. PMID:
18834626.
7. Yang B, Mo Z, Wu C, Yang H, Yang X, He Y,
et al. A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population. BMC Med Genomics 2014;7:10. PMID:
24513273.
8. Takeuchi F, Yamamoto K, Isono M, Katsuya T, Akiyama K, Ohnaka K,
et al. Genetic impact on uric acid concentration and hyperuricemia in the Japanese population. J Atheroscler Thromb 2013;20:351–367. PMID:
23238572.
9. Zhang L, Spencer KL, Voruganti VS, Jorgensen NW, Fornag M, Best LG,
et al. Association of functional polymorphism rs2231142 (Q141K) in the
ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE Study. Am J Epidemiol 2013;177:923–932. PMID:
23552988.
10. Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y,
et al. Common defects of
ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 2009;1:5ra11.
11. Saison C, Helias V, Ballif BA, Peyrard T, Puy H, Miyazaki T,
et al. Null alleles of
ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 2012;44:174–177. PMID:
22246505.
12. Sull JW, Kim HJ, Yun JE, Kim G, Park EJ, Kim S,
et al. Serum adiponectin is associated with family history of diabetes independently of obesity and insulin resistance in healthy Korean men and women. Eur J Endocrinol 2009;160:39–43. PMID:
19088327.
13. Yoon SJ, Lee HS, Lee SW, Yun JE, Kim SY, Cho ER,
et al. The association between adiponectin and diabetes in the Korean population. Metabolism 2008;57:853–857. PMID:
18502270.
14. Jee SH, Sull JW, Lee JE, Shin C, Park J, Kimm H,
et al. Adiponectin concentrations: a genome-wide association study. Am J Hum Genet 2010;87:545–552. PMID:
20887962.
15. Bailey-Dell KJ, Hassel B, Doyle LA, Ross DD. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 2001;1520:234–241. PMID:
11566359.
16. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (
ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 1998;58:5337–5339. PMID:
9850061.
17. Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 1998;22:1164–1171. PMID:
9877251.