1. Park KS. How much amount of socioeconomic loss is caused by digestive diseases? Korean J Gastroenterol 2011;58:297–299. PMID:
22299172.
2. Corvalan AH, Carrasco G, Saavedra K. The genetic and epigenetic bases of gastritis. (Mozsik G, ed.). In: Current Topics in Gastritis Rijeka: InTech, 2013. pp. 79–95.
3. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984;1:1311–1315. PMID:
6145023.
4. Lee HW, Hahm KB, Lee JS, Ju YS, Lee KM, Lee KW. Association of the human leukocyte antigen class II alleles with chronic atrophic gastritis and gastric carcinoma in Koreans. J Dig Dis 2009;10:265–271. PMID:
19906105.
5. Yuzhalin A. The role of interleukin DNA polymorphisms in gastric cancer. Hum Immunol 2011;72:1128–1136. PMID:
21871937.
6. Zendehdel K, Bahmanyar S, McCarthy S, Nyren O, Andersson B, Ye W. Genetic polymorphisms of glutathione S-transferase genes
GSTP1,
GSTM1, and
GSTT1 and risk of esophageal and gastric cardia cancers. Cancer Causes Control 2009;20:2031–2038. PMID:
19618282.
7. Xue H, Liu J, Lin B, Wang Z, Sun J, Huang G. A meta-analysis of interleukin-8 -251 promoter polymorphism associated with gastric cancer risk. PLoS One 2012;7:e28083. PMID:
22279522.
8. de Oliveira JG, Silva AE. Polymorphisms of the TLR2 and TLR4 genes are associated with risk of gastric cancer in a Brazilian population. World J Gastroenterol 2012;18:1235–1242. PMID:
22468087.
9. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860–867. PMID:
12490959.
10. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ,
et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527–534. PMID:
19396169.
11. Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2000;418–429. PMID:
10902190.
12. Leem S, Jeong HH, Lee J, Wee K, Sohn KA. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. Comput Biol Chem 2014;50:19–28. PMID:
24581733.
13. Hu T, Sinnott-Armstrong NA, Kiralis JW, Andrew AS, Karagas MR, Moore JH. Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics 2011;12:364. PMID:
21910885.
14. Goebel B, Dawy Z, Hagenauer J, Mueller JC. An approximation to the distribution of finite sample size mutual information estimates In: 2005 IEEE International Conference on Communications, 2005 May 16-20; Seoul: Seoul: ICC 2005, 2005. pp 1102–1106. Vol. 2.
15. Hong KW, Kim SS, Kim Y. Genome-wide association study of orthostatic hypotension and supine-standing blood pressure changes in two korean populations. Genomics Inform 2013;11:129–134. PMID:
24124408.
16. Lim JE, Oh B. Allelic frequencies of 20 visible phenotype variants in the korean population. Genomics Inform 2013;11:93–96. PMID:
23843775.
17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D,
et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–575. PMID:
17701901.
18. Liang KC, Wang X. Gene regulatory network reconstruction using conditional mutual information. EURASIP J Bioinform Syst Biol 2008;253894. PMID:
18584050.
19. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R,
et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006;7(Suppl 1):S7. PMID:
16723010.
20. Culverhouse R, Suarez BK, Lin J, Reich T. A perspective on epistasis: limits of models displaying no main effect. Am J Hum Genet 2002;70:461–471. PMID:
11791213.
21. Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM,
et al. A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 2007;31:306–315. PMID:
17323372.
22. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C,
et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007;2:2366–2382. PMID:
17947979.
23. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57. PMID:
19131956.
24. Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988;75:800–802.
25. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J,
et al. Using graph theory to analyze biological networks. BioData Min 2011;4:10. PMID:
21527005.
26. Uchino S, Tsuda H, Noguchi M, Yokota J, Terada M, Saito T,
et al. Frequent loss of heterozygosity at the DCC locus in gastric cancer. Cancer Res 1992;52:3099–3102. PMID:
1591722.
28. Liu Z, Zhang J, Gao Y, Pei L, Zhou J, Gu L,
et al. Large-scale characterization of DNA methylation changes in human gastric carcinomas with and without metastasis. Clin Cancer Res 2014;20:4598–4612. PMID:
25009298.
29. Taniuchi T, Mortensen ER, Ferguson A, Greenson J, Merchant JL. Overexpression of ZBP-89, a zinc finger DNA binding protein, in gastric cancer. Biochem Biophys Res Commun 1997;233:154–160. PMID:
9144414.
30. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014;42:D199–D205. PMID:
24214961.