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A decade-long project, led by several international research groups, called the Encyclopedia of DNA Elements (ENCODE), 
recently released an unprecedented amount of data. The ambitious project covers transcriptome, cistrome, epigenome, and 
interactome data from more than 1,600 sets of experiments in human. To make use of this valuable resource, it is important 
to understand the information it represents and the techniques that were used to generate these data. In this review, we 
introduce the data that ENCODE generated, summarize the observations from the data analysis, and revisit a computational 
approach that ENCODE used to predict gene expression, with a focus on the human transcriptome and its association with 
chromatin modifications. 
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Introduction

In September 2012, 30 research papers, including 6 in 
Nature, were published online (http://www.nature.com/ 
encode/) about genomescale data from a decade-long 
project, the Encyclopedia of DNA Elements (ENCODE) [1]. 
Aiming to delineate all functional elements encoded in the 
human genome [1-4], the ENCODE project examined 1% of 
the human genome in its pilot phase and scaled up to the 
whole genome in its second phase. It released data from 
more than 1,600 sets of experiments from 147 types of 
tissues [4]. These data include a catalog of human protein- 
coding and noncoding RNAs as well as protein-DNA interac-
tions, chromatin and DNA accessibility, histone modifi-
cations, DNA methylation, and long-range chromosomal 
interactions. The ENCODE consortium reported that 80.4% 
of the human genome serves some type of known bio-
chemical function [4]. The unprecedented volume and span 
of this study will make it an excellent resource for biological 
analyses. On the other hand, it can be overwhelming for a 
researcher to access and interpret the data. ENCODE also 
developed novel (or refined existing) techniques for data 
generation and computational analyses. These techniques 

are by no means restricted to ENCODE and can be employed 
in a wide array of applications. Because of the vast span of 
ENCODE, we will limit our scope to the human trans-
criptome and its association with chromatin modifications 
in this review. We aim to introduce the data that ENCODE 
generated and the techniques (both experimental and 
computational) that were used to generate them. We 
summarize the observations that ENCODE found. We also 
provide a detailed discussion of a machine learning method 
that was used to predict gene expression from chromatin 
modifications with higher accuracy than its predecessors. 

Chromatin Modifications Measured by 
Chromatin Immunoprecipitation Sequencing 
(ChIP-seq)

DNA sequences are wrapped around octamers of histone 
proteins to form nucleosomes, the unit of chromatin. The 
nucleosome core is composed of two copies each of four 
histone proteins. Each histone has an N-terminal tail that 
faces outward from the nucleosome and can be chemically 
modified to influence the accessibility of the chromatin and 
interactions with other chromatin-binding proteins. These 
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Name Definition Measures Requirements

Sequencing depth The number of uniquely mapped reads Sufficiency of sequencing ＞10 million for sharp peak
＞20 million for broad peak

NRF #uniquely mapped locationsNRF= ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑#uniquely mapped reads
PCR bottlenecking NRF ≥ 0.8

FRiP #mapped reads in peaksFRiP= ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑#total mapped reads
Signal-to-noise ratio FRiP ＞ 1%

CC CC (fragment lenth)NSC= ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑min (CC)
CC (fragment lenth) － min (CC)RSC= ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑CC (phantom peak) － min (CC)

ChIP enrichment NSC ≥ 1.05
RSC ≥ 0.8

IDR The posterior probability for a peak being in
  the irreproducible group

Reproducibility between 
 replicates

IDR < 0.01

Annotation 
 enrichment

Enrichment of chromatin-associated modifications and
  proteins at functionally annotated features,
  such as TSS and TES

Known characteristic 
 enrichment

Not specified; based on 
 human experts

ChIP-seq, chromatin immunoprecipitation sequencing; ENCODE, Encyclopedia of DNA Elements; NRF, nonredundancy fraction; PCR, 
polymerase chain reaction; FRiP, fraction of reads in peaks; CC, cross correlation; NSC, normalized strand cross-correlation; RSC, 
relative strand cross-correlation; IDR, irreproducible discovery rate; TSS, transcription start site; TES, transcription end site.

Table 1. Quality metrics of chromatin modification ChIP-seq data employed by ENCODE

histone modifications are associated with the activation or 
repression of gene transcription [5] and many other acti-
vities of the genome, such as enhancer activities [6] and 
splicing regulation [7, 8]. There has been great interest in 
dissecting the interactions between histones and other 
chromatin modifications and transcriptional regulation in 
recent years [9]. One of ENCODE’s major goals [4] is to use 
these chromatin modifications to define regulatory elements 
of the human genome in multiple cell lines and to investigate 
their interactions with RNA transcription.

Chromatin immunoprecipitation (ChIP) is an experi-
mental technique used to investigate protein-DNA interac-
tions in the cell. ChIP, followed by microarray (ChIP-chip) or 
high-throughput sequencing (ChIP-seq), is widely used to 
determine genomewide binding locations of proteins, 
including transcription factors, covalent modifications of 
histones, and other chromatin regulatory proteins. ChIP- 
chip was the chosen technology for the pilot phase of 
ENCODE to dissect the regulatory regions in the 1% 
selected portion of the human genome [2, 10, 11]. As next- 
generation sequencing technology advanced [12], it soon 
became clear that ChIP-seq was a superior approach [13, 14]. 

ChIP-seq was the chosen technology for the second phase 
of the ENCODE project [3, 4, 15]. Although ChIP-seq shows 
clear advantages over ChIP-chip, it is by no means a perfect 
technology. In an evaluation study performed by Chen et al. 
[16], multiple factors were found to influence the fidelity of 
ChIP-seq data. For example, ChIP-seq data were found to be 
biased toward open chromatin regions, leading to false 
positives if not corrected; comparison of different algorithms 
also showed notable variation in sensitivity and specificity. 

The ENCODE consortium has established a set of guidelines 
to ensure the quality of ChIP-seq experiments [15]. Because 
antibodies play a predominant role in the success of ChIP 
experiments, a significant effort has been made by ENCODE 
to characterize the specificity and efficiency of a large 
number of antibodies. The list of the antibodies used and 
validated by ENCODE can be found at: http://genome. 
ucsc.edu/ENCODE/antibodies.html. A large-scale assess-
ment of histone modification antibodies (＞200) was 
performed by multiple groups [17] of the ENCODE 
consortium, with the most up-to-date information available 
at: http://compbio.med.harvard.edu/antibodies/. In addi-
tion, multiple quality metrics have been developed and used 
by the ENCODE project [15], as listed in Table 1. Having 
employed these quality metrics, the ENCODE consortium 
mapped 11 histone modifications plus one histone variant 
across 46 human cell types, including a complete matrix of 
the 12 marks across two groups of cell lines, designated as 
tier 1 and tier 2. 

Transcriptome in Human Cells
ENCODE releases a reference gene set (GENCODE) 
and RNA expression catalogs

The ENCODE project has produced a reference gene set, 
referred to as GENCODE (http://www.gencodegenes.org) 
[18]. GENCODE (version 7) identified a comprehensive set 
of 20,687 protein-coding and 9,640 manually curated long 
noncoding RNA (lncRNA) loci (representing 15,512 non-
coding transcripts/isoforms). Currently, in version 15, it has 
20,447 coding genes and 13,249 lncRNA loci (representing 
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Property lncRNAs Coding RNAs

Protein coding potential Very weak Higher 
Structure Majority has 2 exons (42%)

Longer exons and introns
6% has 2 exons, 75% has at least two
 different/dominant major isoform

Evolutionary conservation Weaker
30% primate specific

Stronger

Chromatin marks Active histone marks at TSS
Slight excess level of silencing (H3K27me3) and
activating (H3K36me3) marks

Active histone marks at TSS

Class Predominantly in nucleus
Significantly more enriched in chromatin than mRNAs

Predominantly in cytosol

LncRNA, long noncoding RNA; TSS, transcriptional start site.

Table 2. Comparison of lncRNAs and coding RNAs

22,531 noncoding transcripts/isoforms). For this reference 
gene set, GENCODE used manual gene annotation from the 
Human and Vertebrate Analysis and Annotation (HAVANA) 
group (http://www.sanger.ac.uk/research/projects/verteb
rategenome/havana/) and automatic gene annotation from 
Ensembl [19]. To construct a comprehensive RNA ex-
pression catalog, ENCODE sequenced RNA (using RNA- 
seq) from 15 different cell lines in multiple subcellular 
fractions [18]. The expression catalog in multiple cell types 
provides the transcriptome of coding and noncoding genes, 
short (＜200 bp) and long (＞200 bp) in length, poly-
adenylated or nonpolyadenylated, as well as the com-
partment in cells where RNAs in each type are populated. 

Long noncoding RNAs 

LncRNAs are nonprotein-coding transcripts longer than 
200 nucleotides. LncRNAs have been known to have similar 
characteristics as coding RNAs. They are polyadenylated, 
associated with chromatin signatures, and have multiexonic 
structure [20, 21]. Some lncRNAs use identical or almost 
identical transcription initiation complexes [22] and some-
times overlap with protein-coding genes and can be 
transcribed from either strand [22, 23]. 

GENECODE interrogated the properties of 15,512 
lncRNAs. Table 2 summarizes the comparison between 
lncRNAs and coding RNAs. Expressed lncRNAs have an 
activating histone modification profile similar to that of 
protein-coding genes, with slightly excess levels of both 
silencing (H3K27me3) and activating (H3K36me3) marks 
in lncRNAs [24]. Although many lncRNAs are polya-
denylated, they are significantly enriched in nonpoly-
adenylated transcripts compared with coding RNAs [24]. As 
expected, the lncRNAs have significantly lower protein 
potentials compared with mRNAs. Interestingly, they are 
biased toward two-exon transcripts and predominately 
localized in the chromatin and nucleus, while coding RNAs 
are predominantly observed in the cytosol; only 6% of them 

have a 2-exon structure. 
In order to identify the function and targets of lncRNAs, 

Derrien  et al. [24] investigated the correlation between 
lncRNAs and coding RNAs; both positive and negative 
correlations were found. Overall, the number of positive 
correlations was larger than the negative correlations. 
Compared with trans-acting lncRNAs, cis-acting lncRNAs 
showed more positive correlations. Interestingly, lncRNAs 
that intersected protein-coding exons in the antisense 
orientation showed a strong pattern of coexpression [24]. 
They also checked sequence conservation by BLASTing 
human lncRNAs against all available mammalian genomes. 
Around 30% (n = 4,546) of lncRNAs appeared to have arisen 
in the primate lineage, and 0.7% (n = 101) of them appeared 
to be human-specific [24].

RNA splicing 

Recent studies suggest that many pre-mRNA processing 
events are cotranscriptional [25-27]. RNA imaging found 
that splicing can follow the completion of transcription [28]. 
Tilgner et al. [29] investigated cotranscriptional splicing by 
interrogating RNA fractions from several cellular com-
partments in K562 cells. They found that only a tiny fraction 
of exons were found to be surrounded completely by an 
unspliced intron in chromatin-associated RNA. This sug-
gests that splicing is already occurring during transcription 
[18, 29]. The strong enrichment of spliceosomal small 
nuclear RNAs (snRNAs) in the chromatin-associated frac-
tion compared with other fractions also supports cotran-
scriptional splicing. These observations confirm the idea 
that chromatin structure could play a role in splicing [7, 
30-34]. However, for alternative exons and lncRNAs, 
splicing tends to occur later and might remain unspliced in 
some cases [29]. 

RNA editing 

Li et al. [35] reported 10,210 exonic sites in the human 
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Description Classification Detail 

Chromatin Methylation H3K4me1, H3K4me2, H3K4me3, H3K27me3, H3K36me3, H3K79me2, H3K9me1, 
H3K9me3, H4K20me1

Acetylation H3K9ac, H3K27ac
Others H2A.Z, DNase I hypersensitivity

Cell lines Tier 1 K562, GM12878, H1-hESC
Tier 2 HepG2, HeLa-S3, NHEK, HUVEC

Cellular compartments Nucleus Further isolated into nucleolus, nucleoplasm, and chromatin in selected cell lines
Cytosol 
Whole cell

RNA extractions PolyA＋
PolyA－

RNA sequencing technology CAGE Cap analysis of gene expression [54]
RNA-PET RNA paired end tag [55]
RNA-seq Whole transcript coverage [56]

Table 3. Summary of data collected for modeling gene expression using chromatin features

genome where an RNA sequence did not match with the 
DNA sequence, suggestive of RNA editing. However, there 
have been debates about whether their observations 
occurred by sequencing error, gene duplication, mapping 
error, or read-end misalignment [36-38]. 

Park et al. [39] developed a pipeline to filter sequencing 
artifacts in identifying RNA editing. They found that the 
majority of non-A-to-G variants came from incorrect read 
mapping across splice junctions. Most of the edits they 
found were A-to-G(I) variants, which corresponds with 
recent observations [40] but differs from Li et al.’s report 
[35] of a substantial number of noncanonical single nucle-
otide variant edits in the RNA of human lymphoblastoid 
cells. Most A-to-G(I) edits were located in introns and 
untranslated regions, with only a fraction of sites repro-
ducibly edited across multiple cell lines. 

Pseudogenes 

Pseudogenes have been considered nonfunctional se-
quences of genomic DNA that lost their coding potential due 
to disruptive mutations, such as frameshifts and premature 
stop codons [41-44]. Recent studies have shown that 
pseudogenes can regulate their parent genes [45-49]. Using 
manual annotation, with the assistance of computational 
pipelines, GENCODE created a database called Pseudogene 
Decoration Resource (psiDR). psiDR provides a variety of 
information on 11,216 peudogenes, including transcription 
activity, chromatin features, functional genomics, and evo-
lutionary constraints [50]. Transcribed pseudogenes show 
enhanced chromatin accessibility and enrichment with 
histone marks, although they are lower than those of coding 
genes. The majority of pseudogenes contains no or very few 
transcription factor binding sites (TFBSs), but the diffe-

rences between the number of TFBSs associated with tran-
scribed and nontranscribed pseudogenes are significant. 

Small RNAs 

GENCODE also categorized 7,054 small RNAs into 2,756 
micro RNAs (miRNAs), snRNAs, small nucleolar RNAs 
(snoRNAs), and transfer RNAs (tRNAs). They found that 
miRNAs and tRNAs were abundant in cytosol, snoRNAs 
were in the nucleus, and snRNAs were in both the nucleus 
and cytosol. snRNAs were found abundantly in the 
chromatin-associated RNA fractions, which further 
supports predominant splicing during transcription. 

Enhancer RNAs 

RNAs at enhancers (eRNAs) were first characterized by 
observing transcription activities at the promoter-distal 
CREB binding protein-binding sites in mouse cortical 
neurons [51]. The bidirectional property of eRNAs and their 
association with gene expression were further studied using 
nascent RNAs from global run-on sequencing (GROseq) 
data [52, 53]. ENCODE used RNA assays to detect tran-
scription activity. Besides the bidirectional property, 
ENCODE identified transcriptional initiation using cap 
analysis gene expression (CAGE) [54] signals. Interestingly, 
they found polyadenylated eRNAs, although most eRNAs 
were prevalent in the nonpolyadenylated form. They also 
observed that histone marks associated with eRNAs were 
the factors for transcriptional initiation and elongation: 
H3K27ac, H3K79me2, and RNA polymerase. These lines of 
evidence suggest regulatory functions of eRNAs.

http://www.genominfo.org
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Predicting Gene Expression by Chromatin 
Features

Enabled by the unprecedented volume of data generated 
by the ENCODE project, Dong et al. [57] performed a very 
interesting study that attempted to predict gene expression 
from chromatin features using machine learning techniques. 
As usually practiced, a machine learning study is composed 
of a series of procedures that typically involve data collection, 
data representation, model building, and testing. Using 
machine learning terminology, the response variables here 
are gene expression patterns that are predicted/modeled, 
while the predictors or features are various chromatin 
measures. Chromatin data were collected from the 
ENCODE project with 11 chromatin modifications, one 
histone variant, and DNase I hypersensitivity, all mapped in 
seven cell lines (Table 3). Gene expression data were from 
different cellular compartments, using two different RNA 
isolation approaches and sequenced with different techno-
logies (Table 3). With such diversity of RNA sources, Dong 
et al. [57] answered not only the general question of whether 
gene expression can be predicted with satisfactory accuracy 
but also the questions of whether different RNA sources that 
are sequenced by different technologies can be predicted 
differently using the same chromatin features.

The gene expression data are relatively easy to represent. 
They were separated into two classes: transcriptional start 
site (TSS)-based and transcript-based (Tx-based). TSS- 
based expression data are read counts within a 101-bp 
window centered on the TSS, which measures trans-
criptional initiation. Tx-based expression data are sum-
marized read counts from the whole transcript, which mea-
sures transcriptional elongation. However, the represen-
tation of chromatin data seems to be tricky and requires 
further research. Dong et al. [57] used a strategy called 
“bestbin,” which considers the chromatin signals across the 
entire gene body, including 2-kb flanking regions. It basically 
segregates each genic region into equal bins of 100 bp and 
summarizes the chromatin signals within each. A training 
dataset was used to identify the bin that correlates most with 
gene expression, and the learned parameter values were 
applied to testing data. Other strategies [58, 59] are pos-
sible, but the “bestbin” strategy was found to be superior 
[57]. 

RNA sequencing data are known to contain very little or 
no background noise, with a large portion of the genes 
having 0 read counts. Therefore, the response variables 
become a mixture of a 0 component and a positive counting 
component. Neither a classifier nor regression method 
seems to be able to capture the variability of both. To deal 
with the challenge, a two-step approach was used by [57], so 

that a classifier first categorized genes as “expressed” or 
“unexpressed,” Then, a regression method was used to 
predict the expression levels of the expressed genes. The 
final prediction is the product of the classifier and the 
regression method.

To test the performance of their approach, each dataset 
was separated into a training set and a testing set. On the 
training set, the “best bin” and a few other parameters were 
determined. After that, a 10-fold crossvalidation was per-
formed on the testing set to evaluate the model. AUC [60] 
was used to represent the accuracy of the classifier. Two 
criteria were used to represent the accuracy of the regression 
method. Pearson correlation coefficient (PCC) was used to 
measure the similarity between the predicted value and 
experimental value. Root mean square error was used to 
measure the disparity between the predicted value and 
experimental value.

Overall, the two-step model achieved very satisfactory 
performance, with a PCC ＞ 0.9 for a number of datasets and 
a PCC ＞ 0.8 for 71% of the whole data. Looking at the two 
steps separately, the AUC can be as high as 0.95 for the 
classifier, and the PCC can be as high as 0.77 for the 
regression method when predicting CAGE-measured 
polyA+ cytosolic RNA expression in K562 cells. Similar 
performance was achieved in other datasets. It was also 
found that H3K9ac and H3K4me3 are the most important 
predictors for the classifier, strengthening their roles as 
activation marks at TSSs. In contrast, H3K79me2 and 
H3K36me3 are the most important predictors for the 
regression methods, strengthening their roles as elongation 
marks at gene bodies. These findings show that the two-step 
model not only improved the accuracy of prediction but also 
enabled the identification of the chromatin features that are 
associated with different transcriptional roles.

Discussion

During the past decade, the ENCODE project has evolved 
into a genomewide scale, and the dataset it generated has 
expanded in quantity as well as in scope. The ENCODE 
project has provided a global view about the human tran-
scriptome and most noticeably found that the transcribed 
region of the human genome is more abundant than we 
previously thought. This finding significantly reduced the 
so-called intergenic regions, as defined in the traditional 
sense. The quantitative measurement of RNA species in 
several cellular compartments as well as their polyade-
nylation provided a comprehensive view of RNA generation. 
In this review, we have revisited the characteristics of both 
coding and noncoding transcripts in association with their 
structures and locations in cells. 

http://www.genominfo.org


www.genominfo.org 65

Genomics & Informatics Vol. 11, No. 2, 2013

Besides the human transcriptome and the associated 
chromatin modification data that we discussed, the 
ENCODE consortium also mapped transcription factor 
binding sites and their associated DNA motifs, as well as 
DNA methylation and long-range chromosomal interactions 
[4]. In parallel, the Roadmap Epigenomics Project (http:// 
www.roadmapepigenomics.org) and International Human 
Epigenome Consortium (http://www.ihec-epigenomes.org) 
have been accumulating data of a similar scale to understand 
the human genome in other tissues and conditions. It is 
remarkable that the ENCODE data altogether have asso-
ciated more than 80% of the human genome with some type 
of biochemical function so far, and the coverage will continue 
to increase as we map additional protein-DNA interactions 
in the near future. It has now become very clear that 
so-called “junk DNA” is not evolutionarily vestigial but has 
specific structural or biochemical functions. 

While data generation has been a major goal of ENCODE, 
the need to integrate the current datasets is becoming more 
and more important. Computational approaches have been 
developed to exploit the ENCODE data at to a fuller 
potential. For instance, chromatin features were used to 
model gene expression [57, 61]; integrative methods were 
developed to annotate genomes [62-64]; visualization tools 
were developed to investigate epigenomic regulation at a 
global scale (also see ngs.plot at https://code.google. 
com/p/ngsplot/) [65, 66]; and large regulatory networks 
were reconstructed, based on TFs and DNaseI footprinting 
[67, 68]. The network-based approach as well as the chro-
mosomal interactions [69] provided novel angles in studying 
gene regulation at higher levels. New approaches to 
integrate the large amount of data to provide new biological 
insights are on the horizon. 
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