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Introduction 

Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease that 
contributes to metabolic disorders and associated health conditions. In recent years, the 
incidence of NAFLD has risen, surpassing viral hepatitis as the leading chronic liver dis-
ease worldwide. NAFLD severity varies from the milder nonalcoholic fatty liver (NAFL) 
to the more serious nonalcoholic steatohepatitis (NASH) [1,2]. NASH is characterized by 
hepatic steatosis accompanied by lobular inflammation and cell death, potentially pro-
gressing to fibrosis [3,4], cirrhosis, and even liver cancer. Notably, the degree of liver fibro-
sis is directly linked to the increased risk of liver cancer [5]. Consequently, evaluating the 
stage of liver fibrosis is crucial for the timely intervention in NASH. Liver fibrosis is classi-
fied into five stages: nonfibrotic (F0), mild fibrosis (F1), moderate fibrosis (F2), severe fi-
brosis (F3), and cirrhosis (F4) [6]. 
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The occurrence and development of NAFLD and NASH are in-
fluenced by a range of factors [7,8], including genetic predisposi-
tion to obesity, epigenetic modifications, metabolic and signaling 
pathways in hepatocytes, and cellular interactions within the liver 
and adipose tissue [9]. Consequently, there is a need to develop an 
early noninvasive diagnostic system and an early warning system 
for disease risk. These would facilitate the identification of suscepti-
bility genes for NASH, thereby assisting in the investigation of its 
pathogenesis and the development of potential treatments. 

Weighted gene co-expression network analysis (WGCNA) is a 
method used to analyze gene expression patterns across multiple 
samples [10]. WGCNA clusters genes with similar expression pro-
files and examines the relationship between these clusters, known 
as modules, and specific traits or phenotypes. Additionally, it utiliz-
es these modules and associated phenotypic data to identify cen-
tral, or hub, genes within the modules. Consequently, WGCNA has 
become a widely employed tool in studies of phenotypic traits and 
gene association analyses, aiding in the identification of molecular 
markers or potential therapeutic targets in complex diseases 
[11,12]. 

We hypothesized that certain gene modules or hub genes play a 
significant role in the progression of liver fibrosis. For this study, we 
selected three sets of NASH data from the National Center for Bio-
technology Information (NCBI). We performed WGCNA on the 
transcriptome data and corresponding liver fibrosis data to investi-
gate the underlying mechanisms of NASH. Furthermore, we pro-
posed that these hub genes may represent viable therapeutic targets 
for NASH. 

Methods 

Data collection and processing 
The mRNA expression data utilized in our study, specifically from 
datasets GSE49541, GSE48452, and GSE167523, were retrieved 
from the Gene Expression Omnibus database at NCBI [13]. The 
GSE49541 dataset comprises expression data obtained through ar-
ray profiling, focusing on NAFLD in 72 patients. This group in-
cluded 40 individuals with mild NAFLD (fibrosis stages 0–1) and 
32 with advanced NAFLD (fibrosis stages 3–4). The objective was 
to delineate liver gene expression patterns that differentiate mild 
from advanced NAFLD and to establish a gene expression profile 
linked to advanced NAFLD. The GSE48452 dataset also involved 
expression profiling by array, encompassing 73 human liver samples 
categorized into four groups: control (C; n = 14), healthy obese (H; 
n = 27), steatosis (S; n = 14), and NASH (n = 18). Data from the 
NASH group (N; n = 18), which included four samples with fibro-

sis stages 3–4 and 14 with fibrosis stages 0-1, were specifically se-
lected for differential gene expression (DEG) analysis. 

The GSE167523 dataset originates from global RNA sequencing 
of snap-frozen liver tissue obtained from 98 patients, comprising 48 
with mild NAFLD and 50 with NASH, all of whom had biop-
sy-proven NAFLD. This data was generated using high-throughput 
sequencing. 

The GSE49541 dataset was utilized to construct a co-expression 
network and identify hub genes associated with liver fibrosis in 
NAFLD. This microarray data provided a gene expression profile 
of the liver from 32 patients with advanced NAFLD (fibrosis stages 
3–4) and 40 patients with mild NAFLD (fibrosis stages 0–1). The 
GSE49541 dataset underwent independent normalization using 
robust multiarray analysis [14] at the NCBI, followed by log2 trans-
formation and quantile normalization. To mitigate batch effects, 
ComBat was applied to the normalized combined dataset. 

Identification of DEGs 
DEGs from GSE49541 between patients with advanced and mild 
NAFLD were identified in the expression data using the "limma" 
package in R via GEO2R on the NCBI platform [15]. The signifi-
cance analysis of microarrays method was employed to detect genes 
with significant expression changes, applying a false discovery rate 
of <0.05 and an absolute log2 fold change of ≥0.5. DEGs from 
GSE48452 and GSE167523 were analyzed in the same manner as 
described above.  

Functional enrichment analysis  
Gene ontology (GO) enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses of DEGs in various mod-
ules were conducted online via the GEne SeT AnaLysis Toolkit 
(http://www.webgestalt.org/) [16]. We established an adjusted 
p-value of <0.05 as the threshold for significance. All findings were 
visually represented using the "ggplot2" package in R [17]. 

WGCNA and co-expression network construction 
The R package "WGCNA" [10] was utilized to construct a co-ex-
pression network of DEGs using the GSE49541 microarray dataset. 
A soft-thresholding power of 22, an R2 cut-off value of 0.85, and a 
minimum module size of 25 genes were selected for the analysis. 
The "Bicor" correlation algorithm and a "signed" network type were 
employed in the network construction. 

Identification of hub genes 
In the module-trait correlation analysis, hub genes exhibiting a 
Pearson correlation value greater than 0.4 and a p-value less than 
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0.0005 were identified as candidates with a significant correlation 
with the level of liver fibrosis. Subsequently, these genes were 
cross-referenced with DEGs from two other datasets (GSE48452 
and GSE167523) to select common DEGs that demonstrated the 
same significant alterations. 

Gene set enrichment analysis 
To further investigate the potential roles of the identified hub genes 
in NAFL fibrosis, gene set enrichment analysis (GSEA) was carried 
out for each hub gene individually [18]. The "clusterProfiler" R 
package was employed to perform the GSEA [19]. The reference 
gene set used was h.all.v7.4.entrez.gmt from the Molecular Signa-
tures Database (MSigDB) [20], and an adjusted p-value of less than 
0.05 was set as the filter condition. 

Statistical analysis 
The statistical significance of differences between the two groups 
was assessed using either a nonparametric test or the t-test, depend-
ing on the characteristics of the data distribution. All analyses were 
performed with R software version 4.1.0 (R Foundation for Statisti-
cal Computing, Vienna, Austria). p-values less than 0.05 were 
deemed to indicate statistical significance. 

Results 

DEGs between advanced NAFLD and mild NAFLD 
A total of 1,359 DEGs, comprising 600 downregulated and 759 
upregulated DEGs in GSE49541, were identified by comparing 
the transcriptomes of liver tissues from patients with advanced and 
mild NAFLD (Fig. 1A). These DEGs were subsequently utilized 
for WGCNA and the construction of a co-expression network. 
The correlations between the top 20 upregulated and the top 20 
downregulated DEGs are depicted in Fig. 1B. KEGG pathway 
analysis showed that the upregulated DEGs were predominantly 
enriched in pathways such as phosphoinositide 3-kinase–Akt sig-
naling, focal adhesion, microRNAs in cancer, cancer pathways, 
leukocyte transendothelial migration, and actin cytoskeleton regu-
lation. In contrast, downregulated genes were enriched in path-
ways including fatty acid degradation, peroxisome, and the metab-
olism of glycine, serine, and threonine, as well as other metabolic 
pathways (Fig. 1C). GO analysis indicated that these DEGs are 
implicated in biological processes such as extracellular structure 
organization, regulation of chemotaxis, small molecule catabolic 
processes, and cellular components including the extracellular ma-
trix, endoplasmic reticulum lumen, and mitochondrial matrix. 
They are also involved in molecular functions like structural con-

stituents of the extracellular matrix, receptor ligand activity, and 
cofactor binding (Fig. 1D). 

WGCNA analysis and co-expression network construction 
We selected a correlation coefficient threshold of 0.85, and the 
soft-thresholding power was determined to be 22 (Fig. 2A). Seven 
co-expression modules were identified using WGCNA (Fig. 2B). 
While the gray module contained the largest number of genes, it 
did not include any genes that were significantly correlated. Conse-
quently, the turquoise module contained the majority of signifi-
cantly correlated genes, with the blue, brown, and yellow modules 
following in that order (Fig. 2B). 

Module-trait correlations in liver fibrosis and the 
identification of hub genes 
The analysis revealed that seven distinct modules were associated 
with varying degrees of NAFL fibrosis (Fig. 3A). The DEGs within 
the turquoise module exhibited the strongest positive correlation 
with the most advanced stage of liver fibrosis, whereas the DEGs in 
the yellow module demonstrated the most pronounced negative 
correlation. The DEGs in the turquoise, red, brown, and green 
modules showed increased expression, in contrast to the downreg-
ulated DEGs in the blue and yellow modules. The module eigen-
gene adjacency heatmap displayed the gene expression patterns 
across these modules (Fig. 3B). Correlation analysis, as detailed in 
Table S1 and derived from WGCNA, revealed that genes with high 
correlation values (Pearson correlation value > 0.7, p < 0.05) in the 
context of liver fibrosis also exhibited a strong interrelationship 
(Fig. 3C). Consequently, these genes were identified as potential 
hub gene candidates. 

Validation and efficacy evaluation of hub genes 
To further validate the hub genes, we selected two additional tran-
scriptome datasets (GSE48452 and GSE167523) from liver tissues 
of patients with advanced and mild NAFLD. Upon comparison 
with the GSE49541 dataset, we identified five key DEGs (BICC1, 
C7, EFEMP1, LUM, and STMN2) that exhibited consistent and 
significant upregulation in both datasets (Fig. 4). Moreover, we 
conducted receiver operating characteristic curve analysis and cal-
culated the area under the curve (AUC) to differentiate between 
advanced fibrosis (stage 3–4) and mild fibrosis (stage 0–1). The 
analysis revealed that the AUCs for these five genes were all greater 
than 0.7 across the datasets GSE49541 (Supplementary Fig. 1A), 
GSE167523 (Supplementary Fig. 1B), and GSE48452 (Supple-
mentary Fig. 1C). 
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Fig. 1. Differentially expressed gene (DEG) analysis and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. 
(A) Volcano plot of DEGs in GSE49541. (B) Heatmap of the expression levels of the top 20 upregulated and top 20 downregulated DEGs. (C) 
KEGG analysis of downregulated and upregulated DEGs. (D–F) GO analysis of downregulated and upregulated DEGs.

Gene set enrichment analysis 
GSEA of single genes revealed that the gene sets were enriched in 
the samples with BICC1 (Fig. 5A), C7 (Fig. 5B), EFEMP1 (Fig. 
5C), LUM (Fig. 5D), and STMN2 (Fig. 5E). While these gene sets 
showed high expression, others were suppressed, including those 
involved in fatty acid metabolism and bile acid metabolism—criti-

cal pathways in liver metabolism and cholesterol homeostasis. We 
focused on gene sets associated with immunity for further analysis. 
We found that two gene sets, specifically those related to the inflam-
matory response and tumor necrosis factor (TNF)-α signaling via 
nuclear factor кB (NF-кB), were enriched in samples with elevated 
expression of BICC1, C7, and EFEMP1. Additionally, gene sets as-
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Fig. 2. Co-expression module analysis. (A) The relationship between the scale-free fit index and various soft-thresholding powers and 
between the mean connectivity and various soft-thresholding powers. (B) Clustering dendrogram of genes; various colors represent different 
modules.
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sociated with allograft rejection were also enriched in samples with 
C7 and EFEMP1, while those related to interleukin (IL)-2–STAT5 
signaling were enriched in samples with C7 (Fig. 6A–6C). Similar-
ly, gene sets linked to allograft rejection, IL2-STAT5 signaling, and 
TNFα signaling via NF-κB were enriched in samples with LUM 
(Fig. 6D), and those related to allograft rejection and inflammatory 
response were enriched in samples with STMN2 (Fig. 6E).  

Discussion 

NAFLD is the most common chronic liver disease worldwide, en-
compassing a spectrum of pathological processes from benign he-

patic steatosis to NASH, cirrhosis, and potentially hepatocellular 
carcinoma [21]. The progression from simple hepatic steatosis to 
NASH represents a critical juncture in the evolution of severe liver 
disease. Patients with NASH face a substantially increased risk of 
liver fibrosis and end-stage liver disease compared to those with 
simple fatty liver disease [22]. Consequently, pinpointing genes 
that predispose individuals to NASH is instrumental for under-
standing its pathogenesis and for the development of targeted 
therapies. 

Recent studies have shown that it is necessary to build gene 
co-expression networks within the scope of exploratory research. 
These networks are instrumental in identifying key modules and 
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Fig. 3. Important module analysis. (A) The relationships between the liver fibrosis trait and seven modules. (B) Eigengene adjacency heatmap 
of differentially expressed gene expression levels in six modules. (C) Heatmap of the relationships among genes with high correlation values 
(Pearson correlation value > 0.7, p < 0.05) for liver fibrosis.
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Fig. 4. (A–C) Gene expression levels of the five key genes in three mRNA datasets.

genes associated with specific diseases. In our study, we employed 
WGCNA to examine NASH transcriptome data (GSE49541). We 
discovered that the turquoise module exhibited the most significant 
positive correlation with NASH and liver fibrosis, whereas the yel-
low module demonstrated the most significant negative correlation. 
To further pinpoint hub genes, we compared DEGs from two addi-
tional transcriptome datasets (GSE48452 and GSE167523). This 
comparison revealed five common genes (BICC1, C7, EFEMP1, 
LUM, and STMN2) that were consistently upregulated. The AUC 
values for these five hub genes were greater than 0.7 across the data-
sets, confirming the reliability of our analytical approach. 

The functions of these five genes are all associated with liver me-
tabolism, NAFLD, NASH, and related conditions. LUM is a novel 
essential factor in hepatic fibrosis and encodes an extracellular ma-

trix proteoglycan [23]. It has also been identified as a central gene 
in the progression of fibrosis in patients with NAFLD [24]. C7, 
which encodes a serum glycoprotein involved in forming a mem-
brane attack complex, has been suggested as a potential biomarker 
for advanced fibrosis in NAFLD through proteomic screening [25] 
and is implicated in the disease's mechanism [26]. EFEMP1 is rec-
ognized as a transcriptomic signature in NASH [27]. STMN2 has 
been profiled in early-stage liver fibrosis in patients with chronic 
hepatitis C virus infection [28], and its expression has been posi-
tively correlated with insulin resistance in NASH [29]. BICC1 has 
been identified as a novel prognostic biomarker in gastric cancer, 
associated with immune infiltrates [30], and has also been suggest-
ed as a diagnostic marker for NAFLD [31]. GSEA of these five 
genes further confirmed their roles in liver metabolism. For in-
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Fig. 5. Gene set enrichment analysis results for five key genes. (A) Bicc1. (B) C7. (C) Efemp1. (D) Lum (E) Stmn2.

stance, disruptions in bile acid metabolism can lead to cholestatic 
liver disease, dyslipidemia, fatty liver disease, cardiovascular disease, 
and diabetes [32]. 
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Fig. 6. Pathway analysis of gene sets related to immunity in five key genes. (A) Bicc1. (B) C7. (C) Efemp1. (D) Lum (E) Stmn2.

pvalue
0.0048HALLMARK_INFLAMMATORY_RESPONSE

p.adjust

0.0076HALLMARK_TNFA_SIGNALING_VIA_NFKB
0.0204
0.0289

0.0

0.1

0.2

0.3

0.4

0.5

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250
Rank in Ordered Dataset

(A) Bicc1
pvalue
0.0023HALLMARK_ALLOGRAFT_REJECTION

p.adjust

0.0018HALLMARK_IL2_STAT5_SIGNALING

0.0032HALLMARK_INFLAMMATORY_RESPONSE

0.0029HALLMARK_TNFA_SIGNALING_VIA_NFKB

0.0096
0.0084
0.0112
0.0112

0.0

0.2

0.4

0.6

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250
Rank in Ordered Dataset

R
an

ke
d 

Li
st

 M
et

ric

(B) C7

pvalue
0.0031HALLMARK_ALLOGRAFT_REJECTION

p.adjust

0.0083HALLMARK_INFLAMMATORY_RESPONSE

0.0058HALLMARK_TNFA_SIGNALING_VIA_NFKB

0.0131

0.0228
0.0199

0.0

0.2

0.4

0.6

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250

(C) Efemp1
pvalue
0.0049HALLMARK_ALLOGRAFT_REJECTION

p.adjust

0.0039HALLMARK_IL2_STAT5_SIGNALING

0.0012HALLMARK_TNFA_SIGNALING_VIA_NFKB

0.0186
0.0167
0.0058

0.0

0.2

0.4

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250
Rank in Ordered Dataset

Rank in Ordered Dataset

R
an

ke
d 

Li
st

 M
et

ric

Rank in Ordered Dataset

pvalue
0.0077HALLMARK_ALLOGRAFT_REJECTION

p.adjust

0.0046HALLMARK_INFLAMMATORY_RESPONSE

0.0226

0.0176

0.0

0.2

0.4

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250
Rank in Ordered Dataset

R
an

ke
d 

Li
st

 M
et

ric

(D) Lum

(E) Stmn2

pvalue
0.0048HALLMARK_INFLAMMATORY_RESPONSE

p.adjust

0.0076HALLMARK_TNFA_SIGNALING_VIA_NFKB
0.0204
0.0289

0.0

0.1

0.2

0.3

0.4

0.5

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250
Rank in Ordered Dataset

(A) Bicc1
pvalue
0.0023HALLMARK_ALLOGRAFT_REJECTION

p.adjust

0.0018HALLMARK_IL2_STAT5_SIGNALING

0.0032HALLMARK_INFLAMMATORY_RESPONSE

0.0029HALLMARK_TNFA_SIGNALING_VIA_NFKB

0.0096
0.0084
0.0112
0.0112

0.0

0.2

0.4

0.6

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250
Rank in Ordered Dataset

R
an

ke
d 

Li
st

 M
et

ric

(B) C7

pvalue
0.0031HALLMARK_ALLOGRAFT_REJECTION

p.adjust

0.0083HALLMARK_INFLAMMATORY_RESPONSE

0.0058HALLMARK_TNFA_SIGNALING_VIA_NFKB

0.0131

0.0228
0.0199

0.0

0.2

0.4

0.6

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250

(C) Efemp1
pvalue
0.0049HALLMARK_ALLOGRAFT_REJECTION

p.adjust

0.0039HALLMARK_IL2_STAT5_SIGNALING

0.0012HALLMARK_TNFA_SIGNALING_VIA_NFKB

0.0186
0.0167
0.0058

0.0

0.2

0.4

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250
Rank in Ordered Dataset

Rank in Ordered Dataset

R
an

ke
d 

Li
st

 M
et

ric

Rank in Ordered Dataset

pvalue
0.0077HALLMARK_ALLOGRAFT_REJECTION

p.adjust

0.0046HALLMARK_INFLAMMATORY_RESPONSE

0.0226

0.0176

0.0

0.2

0.4

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

-0.5

0.0

0.5

1.0

250 500 750 1000 1250
Rank in Ordered Dataset

R
an

ke
d 

Li
st

 M
et

ric

(D) Lum

(E) Stmn2

Conflicts of Interest 

No potential conflict of interest relevant to this article was reported. 

Supplementary Materials 

Supplementary data can be found with this article online at http://
www.genominfo.org. 

AA

EE

CC

BB

DD

9 / 11https://doi.org/10.5808/gi.23051

Genomics Inform 2023;21(4):e45

www.genominfo.org.
https://doi.org/10.5808/gi.23051


References 

1. Ahmed A, Wong RJ, Harrison SA. Nonalcoholic fatty liver dis-
ease review: diagnosis, treatment, and outcomes. Clin Gastroen-
terol Hepatol 2015;13:2062-2070. 

2. Machado MV, Diehl AM. Pathogenesis of nonalcoholic steato-
hepatitis. Gastroenterology 2016;150:1769-1777. 

3. Nasr P, Ignatova S, Kechagias S, Ekstedt M. Natural history of 
nonalcoholic fatty liver disease: a prospective follow-up study 
with serial biopsies. Hepatol Commun 2018;2:199-210. 

4. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, 
et al. Global burden of NAFLD and NASH: trends, predictions, 
risk factors and prevention. Nat Rev Gastroenterol Hepatol 
2018;15:11-20. 

5. Marengo A, Rosso C, Bugianesi E. Liver cancer: connections 
with obesity, fatty liver, and cirrhosis. Annu Rev Med 2016;67: 
103-117. 

6. Pavlov CS, Casazza G, Nikolova D, Tsochatzis E, Burroughs AK, 
Ivashkin VT, et al. Transient elastography for diagnosis of stages 
of hepatic fibrosis and cirrhosis in people with alcoholic liver dis-
ease. Cochrane Database Syst Rev 2015;1:CD010542. 

7. Fraile JM, Palliyil S, Barelle C, Porter AJ, Kovaleva M. Non-alco-
holic steatohepatitis (NASH): a review of a crowded clinical 
landscape, driven by a complex disease. Drug Des Devel Ther 
2021;15:3997-4009. 

8. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. 
Mechanisms of NAFLD development and therapeutic strategies. 
Nat Med 2018;24:908-922. 

9. Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and 
resolution of inflammation in NASH. Nat Rev Gastroenterol 
Hepatol 2018;15:349-364. 

10. Langfelder P, Horvath S. WGCNA: an R package for weighted 
correlation network analysis. BMC Bioinformatics 2008;9:559. 

11. Tian Z, He W, Tang J, Liao X, Yang Q, Wu Y, et al. Identification 
of important modules and biomarkers in breast cancer based on 
WGCNA. Onco Targets Ther 2020;13:6805-6817. 

12. Niemira M, Collin F, Szalkowska A, Bielska A, Chwialkowska K, 
Reszec J, et al. Molecular signature of subtypes of non-small-cell 
lung cancer by large-scale transcriptional profiling: identification 
of key modules and genes by weighted gene co-expression net-
work analysis (WGCNA). Cancers (Basel) 2019;12:37. 

13. Clough E, Barrett T. The Gene Expression Omnibus Database. 
Methods Mol Biol 2016;1418:93-110. 

14. Sahlabadi A, Chandren Muniyandi R, Sahlabadi M, Golshanbaf-
ghy H. Framework for parallel preprocessing of microarray data 
using Hadoop. Adv Bioinformatics 2018;2018:9391635. 

15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. lim-
ma powers differential expression analyses for RNA-sequencing 
and microarray studies. Nucleic Acids Res 2015;43:e47. 

16. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: 
gene set analysis toolkit with revamped UIs and APIs. Nucleic 
Acids Res 2019;47:W199-W205. 

17. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New 
York: Springer-Verlag, 2016. 

18. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, 
Gillette MA, et al. Gene set enrichment analysis: a knowl-
edge-based approach for interpreting genome-wide expression 
profiles. Proc Natl Acad Sci U S A 2005;102:15545-15550. 

19. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for 
comparing biological themes among gene clusters. OMICS 
2012;16:284-287. 

20. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, 
Tamayo P. The Molecular Signatures Database (MSigDB) hall-
mark gene set collection. Cell Syst 2015;1:417-425. 

21. Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver dis-
ease. Lancet 2021;397:2212-2224. 

22. Kucukoglu O, Sowa JP, Mazzolini GD, Syn WK, Canbay A. 
Hepatokines and adipokines in NASH-related hepatocellular car-
cinoma. J Hepatol 2021;74:442-457. 

23. Krishnan A, Li X, Kao WY, Viker K, Butters K, Masuoka H, et al. 
Lumican, an extracellular matrix proteoglycan, is a novel requisite 
for hepatic fibrosis. Lab Invest 2012;92:1712-1725. 

24. Chang Y, He J, Xiang X, Li H. LUM is the hub gene of advanced 
fibrosis in nonalcoholic fatty liver disease patients. Clin Res Hepa-
tol Gastroenterol 2021;45:101435. 

25. Hou W, Janech MG, Sobolesky PM, Bland AM, Samsuddin S, 
Alazawi W, et al. Proteomic screening of plasma identifies poten-
tial noninvasive biomarkers associated with significant/advanced 
fibrosis in patients with nonalcoholic fatty liver disease. Biosci 
Rep 2020;40:BSR20190395. 

26. Yang Z, Han X, Wang K, Fang J, Wang Z, Liu G. Combined with 
multiplex and network analysis to reveal the key genes and mech-
anisms of nonalcoholic fatty liver disease. Int Immunopharmacol 
2023;123:110708. 

27. He W, Huang C, Zhang X, Wang D, Chen Y, Zhao Y, et al. Identi-
fication of transcriptomic signatures and crucial pathways in-
volved in non-alcoholic steatohepatitis. Endocrine 2021;73:52-
64. 

28. Bieche I, Asselah T, Laurendeau I, Vidaud D, Degot C, Paradis V, 
et al. Molecular profiling of early stage liver fibrosis in patients 
with chronic hepatitis C virus infection. Virology 2005;332:130-
144. 

https://doi.org/10.5808/gi.2305110 / 11

Hu Y and Zhou J • WGCNA analysis for hub genes of NAFLD

https://www.ncbi.nlm.nih.gov/pubmed/26226097
https://www.ncbi.nlm.nih.gov/pubmed/26226097
https://doi.org/10.1053/j.gastro.2016.02.066
https://doi.org/10.1053/j.gastro.2016.02.066
https://doi.org/10.1002/hep4.1134
https://doi.org/10.1002/hep4.1134
https://doi.org/10.1002/hep4.1134
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1038/nrgastro.2017.109
https://www.ncbi.nlm.nih.gov/pubmed/26473416
https://www.ncbi.nlm.nih.gov/pubmed/26473416
https://www.ncbi.nlm.nih.gov/pubmed/26473416
https://doi.org/10.1002/14651858.cd010542.pub2
https://doi.org/10.1002/14651858.cd010542.pub2
https://doi.org/10.1002/14651858.cd010542.pub2
https://doi.org/10.1002/14651858.cd010542.pub2
https://doi.org/10.2147/dddt.s315724
https://doi.org/10.2147/dddt.s315724
https://doi.org/10.2147/dddt.s315724
https://doi.org/10.2147/dddt.s315724
https://doi.org/10.1038/s41591-018-0104-9
https://doi.org/10.1038/s41591-018-0104-9
https://doi.org/10.1038/s41591-018-0104-9
https://doi.org/10.1038/s41575-018-0009-6 
https://doi.org/10.1038/s41575-018-0009-6 
https://doi.org/10.1038/s41575-018-0009-6 
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.2147/OTT.S258439
https://doi.org/10.2147/OTT.S258439
https://doi.org/10.2147/OTT.S258439
https://doi.org/10.3390/cancers12010037
https://doi.org/10.3390/cancers12010037
https://doi.org/10.3390/cancers12010037
https://doi.org/10.3390/cancers12010037
https://doi.org/10.3390/cancers12010037
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1155/2018/9391635
https://doi.org/10.1155/2018/9391635
https://doi.org/10.1155/2018/9391635
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/s0140-6736(20)32511-3
https://doi.org/10.1016/s0140-6736(20)32511-3
https://doi.org/10.1016/j.jhep.2020.10.030
https://doi.org/10.1016/j.jhep.2020.10.030
https://doi.org/10.1016/j.jhep.2020.10.030
https://doi.org/10.1038/labinvest.2012.121
https://doi.org/10.1038/labinvest.2012.121
https://doi.org/10.1038/labinvest.2012.121
https://doi.org/10.1016/j.clinre.2020.04.006
https://doi.org/10.1016/j.clinre.2020.04.006
https://doi.org/10.1016/j.clinre.2020.04.006
https://doi.org/10.1042/bsr20190395
https://doi.org/10.1042/bsr20190395
https://doi.org/10.1042/bsr20190395
https://doi.org/10.1042/bsr20190395
https://doi.org/10.1042/bsr20190395
https://doi.org/10.1016/j.intimp.2023
https://doi.org/10.1016/j.intimp.2023
https://doi.org/10.1016/j.intimp.2023
https://doi.org/10.1016/j.intimp.2023
https://doi.org/10.1007/s12020-021-02716-y
https://doi.org/10.1007/s12020-021-02716-y
https://doi.org/10.1007/s12020-021-02716-y
https://doi.org/10.1007/s12020-021-02716-y
https://doi.org/10.1016/j.virol.2004.11.009
https://doi.org/10.1016/j.virol.2004.11.009
https://doi.org/10.1016/j.virol.2004.11.009
https://doi.org/10.1016/j.virol.2004.11.009
https://doi.org/10.5808/gi.23051


29. Arendt BM, Teterina A, Pettinelli P, Comelli EM, Ma DW, Fung 
SK, et al. Cancer-related gene expression is associated with dis-
ease severity and modifiable lifestyle factors in non-alcoholic fatty 
liver disease. Nutrition 2019;62:100-107. 

30. Zhao R, Peng C, Song C, Zhao Q, Rong J, Wang H, et al. BICC1 
as a novel prognostic biomarker in gastric cancer correlating with 
immune infiltrates. Int Immunopharmacol 2020;87:106828.  

31. Zhu Y, Zhang H, Jiang P, Xie C, Luo Y, Chen J. Transcriptional 
and epigenetic alterations in the progression of non-alcoholic fat-
ty liver disease and biomarkers helping to diagnose non-alcoholic 
steatohepatitis. Biomedicines 2023;11:970.  

32. Chiang JYL, Ferrell JM. Bile acid metabolism in liver pathobiolo-
gy. Gene Expr 2018;18:71-87.  

11 / 11https://doi.org/10.5808/gi.23051

Genomics Inform 2023;21(4):e45

https://doi.org/10.1016/j.nut.2018.12.001
https://doi.org/10.1016/j.nut.2018.12.001
https://doi.org/10.1016/j.nut.2018.12.001
https://doi.org/10.1016/j.nut.2018.12.001
https://doi.org/10.1016/j.intimp.2020.106828
https://doi.org/10.1016/j.intimp.2020.106828
https://doi.org/10.1016/j.intimp.2020.106828
https://doi.org/10.3390/biomedicines11030970
https://doi.org/10.3390/biomedicines11030970
https://doi.org/10.3390/biomedicines11030970
https://doi.org/10.3390/biomedicines11030970
https://doi.org/10.3727/105221618x15156018385515
https://doi.org/10.3727/105221618x15156018385515
https://doi.org/10.5808/gi.23051

