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Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured 
by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tis-
sue of COPD patients was performed, but the heterogeneity of the sample was not seriously 
considered in characterizing the mechanistic dysregulation of COPD. Here, we established a 
new transcriptome analysis pipeline using a deconvolution process to reduce the heteroge-
neity and clearly identified that these transcriptome data originated from the mild or mod-
erate stage of COPD patients. Differentially expressed or co-expressed genes in the protein 
interaction subnetworks were linked with mitochondrial dysfunction and the immune re-
sponse, as expected. Computational protein localization prediction revealed that 19 proteins 
showing changes in subcellular localization were mostly related to mitochondria, suggesting 
that mislocalization of mitochondria-targeting proteins plays an important role in COPD pa-
thology. Our extensive evaluation of COPD transcriptome data could provide guidelines for 
analyzing heterogeneous gene expression profiles and classifying potential candidate genes 
that are responsible for the pathogenesis of COPD. 
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Introduction 

COPD, or chronic obstructive pulmonary disease, is a type of obstructive lung disease 
characterized by long-term poor airflow [1]. It is a general term referring to chronic bron-
chitis, emphysema, and refractory (non-reversible) asthma. These progressive lung diseas-
es are commonly characterized by increased shortness of breath, frequent coughing, in-
creased breathlessness, and wheezing. COPD may be caused by a variety of environmental 
factors, such as air pollution, secondhand smoke, dust, fumes, and chemicals [2]. It is ex-
pected that diverse causes and symptoms of COPD may lead to heterogeneous gene ex-
pression profiles in individual COPD patients, as mentioned by Wedzicha [3]. 

Currently, more than 70% of COPD patients suffer from limited physical activity, and 
50% among them can not lead a normal life [4,5]. In 2015, COPD ranked as the third 
leading cause of death worldwide, and it is expected that the mortality from COPD will in-
crease greatly by 2030 [1]. 

Smoking causes about 80% to 90% of all deaths from COPD [2]. Chemical compounds 
in tobacco smoke may impair immunity to respiratory infections and increase the risk of 
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lung damage. The number of female COPD cases is increasing due 
to the use of tobacco in some high-income countries and exposure 
to air pollution in low-income countries [5]. However, 25% of all 
COPD patients are never-smokers or passive smokers [5]. Genetic 
factors also contribute to the development of COPD. For example, 
alpha-1 antitrypsin, a serum serine protease inhibitor, functions to 
protect the lung from neutrophil elastase, and its deficiency allows 
chronic, uninhibited inflammation in the lung, leading to emphyse-
ma, along with chronic bronchitis [6]. 

The prevalence of COPD is well documented. The diagnostic 
assessment of COPD, as proposed by the Global Initiative for 
Chronic Obstructive Lung Disease (GOLD), is based on 4 multi-
ple factors, such as the patient’s level of symptoms, the extent of air-
flow obstruction, spirometric abnormality, and the identification of 
comorbidities [1]. About 12 million adults in the United States are 
diagnosed with COPD, and 1% of them lose their life from it every 
year. Also, another 12 million people in the United States are re-
garded as having undiagnosed COPD [7]. However, most undiag-
nosed people are estimated to be in the mild or moderate stage of 
COPD and are not likely to be detected. Many case studies have 
considered alternative diagnostic aspects, which do not seem 
enough to cover the whole spectrum of COPD [2,8]. For example, 
inflammatory markers in COPD from the Bergen COPD cohort 
study have been used for the early diagnosis of COPD [9]. 

Recently, major biological and clinical discoveries have been al-
lowed by great technical advances in next-generation sequencing 
techniques. Kim et al. [10] analyzed RNA sequencing (RNA-seq) 
data of 98 COPD lung tissue samples and 91 normal samples clas-
sified by the GOLD definition. In this study, they identified differ-
entially expressed genes (DEGs) and isoforms (DEIs) between 
COPD and normal tissue. But, DEGs and DEIs could not be used 
for distinguishing COPD from normal tissue, probably due to the 
heterogeneity of the COPD samples. 

Here, we established a new transcriptome analysis pipeline to 
remove heterogeneity and find suitable markers to clearly sepa-
rate COPD from normal tissue. The removal of heterogeneity en-
abled us to detect emergent gene expression changes and protein 
interaction subnetworks that were missed in the previous study. 
Especially, the importance of mitochondrial proteins was revital-
ized through our analysis regarding co-expression relationships 
and changes in the subcellular localization of proteins. The analy-
sis pipeline used in this study could be used to classify heteroge-
neous gene expression profiles and predict potential candidates 
for COPD pathogenesis. 

Methods 

Exploratory analysis of gene expression profiles 
Raw RNA-seq data from 98 male COPD and 91 normal samples 
were downloaded from the Gene Expression Omnibus database 
(GSE57148, https://www.ncbi.nlm.nih.gov/geo/). The reads 
were aligned to the human genome (hg19) using tophat (v2.0.9) 
and bowtie2 (v2.1.0.0), along with—segment-length 50—seg-
ment-mismatches 1 [11,12]. The expression levels of individual 
transcripts by fragments per kilobase of exon per million fragments 
mapped (FPKM) were calculated by Cufflinks (v2.21) [13]. A total 
of 1,420 DEGs previously identified by Kim et al. [10] were used 
for comparison purposes. Principal component analysis (PCA) was 
performed with DEGs, and a three-dimensional plot was drawn in 
R. p-values in the bar graph were estimated by student’s t test. After 
500 repeats with the e1071 library in R, the classification power of 
certain genes was examined by building a naive Bayes model with 
10-times cross-validation. The performance of individual classifica-
tion models, estimating sensitivity and specificity, was measured by 
computing area under the curve (AUC) values with the Receiver 
Operating characteristic Curve in R (ROCR) package. 

Measurement of VJ recombination events 
Unmapped reads were collapsed, such that repeatedly appearing 
reads were regarded as a single read. The read count of each se-
quence was sorted in descending order, and the top 10,000 reads 
were selected from individual samples. The reads corresponding to 
V, D, J regions of the B cell receptor (BCR) and T cell receptor 
(TCR) loci were selected by an immunoglobulin variable domain 
sequence analysis tool, called IgBlast (http://www.ncbi.nlm.nih.
gov/igblast/) [14]. Then, VJ recombination events were consid-
ered, using only in-frame sequence reads of 6 V, D, J regions. Alpha 
and beta diversity levels were calculated by vegan and the betapart 
library in R, respectively. A dot plot and a violin plot were visualized 
using R. p-values were calculated by permutation test with 1,000 
permutations. 

Pipeline to remove heterogeneity 
To remove transcriptome heterogeneity, DeMix [15], a statistical 
tool for deconvolving mixed transcriptomes, was used for 2,803 
variable genes with a coefficient of variation of over 0.5 due to the 
high requirement of computer memory. In order to identify DEGs 
confidently, three different tests (t-test, Wilcoxon test, and median 
difference test) were performed with 1,000 permutations. Using 
POINTILLIST [16], the three p-values from each test were inte-
grated into one. Genes with absolute fold-change over 1.25 and 
p-values less than 0.01 in COPD and normal subjects were regard-

https://doi.org/10.5808/GI.2019.17.1.e22 / 12

Ham S et al. • Analysis of heterogeneous COPD transcriptome

www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/igblast/


ed as DEGs. Functional and pathway enrichment assays of DEGs 
were carried out by DAVID [17]. Biological terms with p-values 
less than 0.01 were considered significant. 

COPD-related subnetworks 
PhenomeExpress [18] was used to build vital subnetworks in 
COPD. Phenotypes relevant to COPD were used as seeds to con-
struct the subnetworks. The seed phenotypes were HP:0002875 
(exertional dyspnea), HP:0006510 (chronic obstructive pulmo-
nary disease), MP:0001183 (overexpanded pulmonary alveoli), 
MP:0001951 (abnormal breathing pattern), MP:0010959 (abnor-
mal oxidative phosphorylation), MP:0010956 (abnormal mito-
chondrial ATP synthesis-coupled electron transport), and 
MP:0002499 (chronic inflammation). Information on protein in-
teractions was extracted from ConsensusPathDB [19]. Functional 
enrichment of subnetworks was examined by the Biological Net-
works Gene Ontology tool 7 (BiNGO), an open-source Cytoscape 
(v2.8.1) plugin to assess over-representation of gene ontology 
terms in networks [20]. Subnetworks enriched with specific func-
tions were selected for further consideration. 

Pipeline to predict protein subcellular localization 
Protein subcellular localization was examined and predicted using 
the analysis scheme suggested by Liu and Hu [21] and support 
vector machine (SVM). Information on protein interactions and 
subcellular localization was obtained from ConsensusPathDB 
[19] and the Human Protein Atlas [22], respectively. Gene ex-
pression profiles were converted into a matrix of maximal infor-
mation coefficients (MICs), and the relationships between pro-
teins were calculated using maximal information-based nonpara-
metric exploration statistics [23]. Training and prediction with 
SVM were carried out with the e1071 library in R. The MICs for 
a protein pair were computed in individual COPD and normal 
samples, and the protein pairs with an absolute difference (delta 
MIC >  0.4) of 2 MICs were randomly defined as differentially 
co-expressed gene pairs (DCGPs).  

Results 

Evaluation of heterogeneity in COPD data 
In a previous study by Kim et al. [10], 1,420 DEGs between COPD 
and normal subjects were identified by student’s t-test and edgeR in 
Biocoductor [24]. To see the Euclidean distance and relatedness 
between COPD and normal subjects, PCA was performed (Fig. 
1A). In a three-dimensional data space, it was hard to distinguish 
COPD samples from normal samples. Moreover, three principal 
components explained less than one-half of the variability between 

samples (PC1, 0.422; PC2, 0.069; and PC3, 0.047). These results 
revealed 8 heterogeneity in the COPD samples and indicated that 
simple conventional DEG comparison was not enough to classify 
the samples. 

To identify the status of COPD samples, the average expression 
levels of known COPD marker genes were examined (Fig. 1B) [25-
31]. Genes encoding acute phase proteins, such as fibrinogen α 
(FGA) and fibrinogen γ (FGG), were up-regulated in COPD. The 
expression levels of the immune cytokines interleukin 6 (IL6) and 
CXCL8 (IL8) were also increased. Genes of immune receptors as-
sociated with smoking were highly expressed in COPD than in 
normal samples. However, the extent of changes was generally less 
than 2-fold, suggesting that these COPD samples were in the mild 
stage of COPD. Unusually, the expression levels of tumor necrosis 
factor (TNF; TNF-α) and CSF2 (granulocyte-macrophage colo-
ny-stimulating factor [GM-CSF]) were lower in COPD, which was 
different from previous observations [27,28]. 

By analyzing RNA-seq data, it was possible to measure recombi-
nation events in BCR and TCR loci. VJ recombination occurs in 
the primary lymphoid organs and involves the joining of the vari-
able (V) and joining (J) chains, resulting in the variation of amino 
acid sequences in the antigen-binding regions of BCRs and TCRs. 
By using IgBlast [14], frequent VJ recombination events in the im-
munoglobulin K (IGK) locus were identified. Alpha diversity rep-
resents how many components constitute a particular complex 
within a sample. In contrast, beta diversity is the compositional dis-
similarity between samples. The alpha diversity levels of the IGK 
locus indicated that COPD samples contained marginally higher 
combinatorial diversity than normal samples (Fig. 1C). Besides, 
beta diversity levels showed lower similarity between COPD sam-
ples compared with normal samples (Fig. 1D). Normal samples 
were more similar to each other than to COPD samples. Other im-
munoglobulins (IGH and IGL) and TCRs (TCRA and TCRB) 
showed similar patterns in alpha and beta diversity levels as IGK 
(Supplementary Fig. 1 and 2). From these analyses, the COPD 
samples could be regarded 9 as heterogeneous in the mild stage of 
COPD. 

Reduction of heterogeneity of COPD samples 
A workflow, including the prediction of estimates and the deconvo-
lution process, was set up to resolve the issue of complexity (Fig. 
2A). The critical steps in the pipeline were the prediction of esti-
mates and deconvolution. The deconvolution process was original-
ly designed to estimate the proportions of known sample types in a 
mixture of multiple samples. By assuming the RNA-seq data of our 
98 COPD and 91 normal samples to be a mixture, the deconvolu-
tion process was applied to extract the unique profile of COPD 
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Fig. 1. Heterogeneous chronic obstructive pulmonary disease (COPD) samples in the mild stage. (A) Principal component analysis plot depicting 
relative similarities between COPD samples (red) and normal (NOR) samples (blue) using previously identified differentially expressed genes. 
(B) Expression levels of COPD marker genes. Recep., receptor; S., surfactant. *p < 0.01, **p < 0.0001 by student’s t-test. (C) Alpha diversity 
of VJ combinations in IGK. (D) Beta diversity showing an inverse relation with the compositional similarity between samples in terms of VJ 
combinations in IGK. p-values were calculated after 1,000 per bmutation.
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samples. Having many samples was helpful to increase the accuracy. 
Then, integrative statistical test was performed to identify confident 
DEGs. p-values from the three tests were combined by POINTIL-
LIST [16]. 

In order to confirm the effect of the deconvolution, expression 

levels of known marker genes were re-evaluated (Fig. 2B). The 
p-values of gene expression differences in the FGA, FGG, IL6, and 
CXCL8 genes were not changed. Immune receptors associated 
with smoking kept their higher expression levels in COPD versus 
normal tissue. However, in contrast to Fig. 1B, C-reactive protein 
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(CRP) and β-fibrinogen (FGB) were now up-regulated in COPD. 
SFTPD was significantly down-regulated in COPD. The expres-
sion levels of TNF and CSF2 were not significantly different be-
tween COPD and normal tissue. These results suggest that the 
gene expression profiles of heterogeneous samples can be normal-
ized in good agreement with known patterns through the deconvo-
lution process.  

DEGs and biologically relevant subnetworks 
DEGs—80 up-regulated genes and 757 down-regulated genes in 
COPD—could be 10 identified by applying the following condi-
tions: genes with absolute fold-change over 1.25 and p-values less 
than 0.01 (Fig. 3A, Supplementary Table 1). Of them, 66 (82.5%) 
up-regulated genes and 501 (66.2%) down-regulated genes over-
lapped with the 1,420 genes previously identified by Kim et al. [10]. 
However, PCA of the DEGs showed a clear difference between 
COPD samples and normal samples (Fig. 3B). These DEGs might 
explain the variability between samples better than the previously 
identified DEGs (PC1, 0.702; PC2, 0.031; and PC3, 0.018). Ac-
cordingly, the performance of the prediction model with DEGs 
(AUC) increased from 0.793 to 0.931. 

To detect biological functions or pathways closely related to 
specific genes, we performed enrichment assays with DEGs (Fig. 
3C and 3D). A relatively small number of up-regulated genes in 

COPD were related to several functions, such as smooth muscle 
cell proliferation, protein autophosphorylation, and wound heal-
ing, as previously shown. On the other hand, down-regulated 
genes were associated with translational elongation, antigen pro-
cessing and presentation, and oxidative phosphorylation coupled 
with electron transport in mitochondria. Additionally, in terms of 
biological pathways, down-regulated genes were linked to the ri-
bosome, oxidative phosphorylation, the proteasome, and a cou-
ple of neurodegenerative disorders. 

The identification of protein interaction subnetworks using the 
transcriptome can provide useful information on interaction 
modules for specific functions. Reliable subnetworks were con-
structed by PhenomeExpress in combination with gene expres-
sion profiles and disease-related phenotypes [18]. There were 
five meaningful subnetworks significantly enriched with specific 
functions (Fig. 4A-4D). The largest subnetwork was too complex 
to interpret (Supplementary Fig. 3), and it was further divided 
into three subnetworks (Fig. 4E-4G). Functions, such as electron 
transport chain and translation elongation, were detected in 11 
subnetworks, as with DEGs. In contrast, functions related to the 
regulation of transcription, vesicle-mediated transport, regulation 
of apoptosis, and immune system processes, were only observed 
in subnetworks. Whereas the term ‘general antigen presenting 
and presentation’ was enriched in DEGs, their function was con-

Fig. 2. Deconvolution of chronic obstructive pulmonary disease (COPD) samples increases the difference between COPD and normal (NOR) 
tissue. (A) Deconvolution process to identify differentially expressed genes. (B) Expression levels of COPD marker genes after deconvolution. 
Recep., receptor; S., surfactant. *p < 0.01, **p < 0.0001 by student’s t-test.
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Fig. 3. Differentially expressed genes (DEGs) between chronic obstructive pulmonary disease (COPD) and normal tissue. (A) Scatterplot of gene 
expression levels. Red and blue dots represent up-regulated and down-regulated genes in COPD compared with normal tissue, respectively. 
(B) Principal component analysis plot depicting relative similarities between COPD samples (red) and normal samples (blue) using DEGs. (C, D) 
Biological functions (C) and pathways (D) highly enriched in up-regulated (red) and down-regulated (blue) genes. Individual bars demonstrate 
fold-changes relative to background, and lines display their p-values.
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Fig. 4. Biologically relevant subnetworks in consideration of certain disease phenotypes and gene expression changes. (A–G) Letters at the top 
are the most highly enriched biological functions in individual subnetworks.
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fined to MHC class II in a subnetwork. 

DCGPs and protein sublocalization changes 
One emergent subnetwork associated with vesicle-mediated trans-
port might be linked to the possibility that changes in protein sub-
cellular localization play an important role in COPD development. 
Protein localization was predicted, based on gene expression pro-
files (Fig. 5A). To construct a co-expression network, gene expres-
sion profiles were converted into another format, and co-expression 
relationships of gene pairs were measured using MICs [23]. 

Two genes were regarded as DCGPs if the absolute MIC changes 
between COPD and normal subjects was greater than 0.4. Under 
this condition, 139 up-regulated pairs and 303 down-regulated 
pairs in COPD could be identified (Fig. 5B, Supplementary Table 2). 
In PCA with the DCGPs, there was a clear difference between 
COPD samples and normal samples (Fig. 5C), even though they 
showed variability between samples that was not large as with the 
DEGs (PC1, 0.102; PC2, 0.008; and PC3, 0.005). The prediction 
model with the DCGPs exhibited good performance (AUC, 
0.946). Sixty-two genes among 424 genes in 442 DCGPs over-
lapped significantly with DEGs (hypergeometric test, p =  3.146e-
16), but the remaining 362 genes were not matched to DEGs (Fig. 
5D). These results imply that DCGPs could be complementary to 
DEGs for understanding gene expression profiles. 

The prediction of protein subcellular localization is exemplified 
in Fig. 6A. A mitochondrial protein, NDUFA12, was selected, be-
cause it had 8 interacting proteins and showed coherent changes in 
all interactions. The predicted chance of NDUFA12 translocating 
toward 12 mitochondria was increased in COPD (43.8%), com-
pared with normal tissue (25.5%). In COPD, protein interactions 
between NDUFA12 and other mitochondrial proteins were rein-
forced. However, the actual protein sublocalization changes were 
expected to be much more complex when considering all protein 
interactions. Our analysis workflow was designed to include all pro-
tein interactions and thus predicted the probabilities of 10 subcellu-
lar locations of each protein for each status (Fig. 5A). Out of 76 sig-
nificant subcellular localization changes between COPD and nor-
mal tissue, 19 (25.0%) were related to mitochondria and 52 
(68.4%) were related to the nucleus (Fig. 6B). 

The predicted probabilities of subcellular locations of the mito-
chondria-related proteins were examined (Fig. 6C). Except for 
ILF3, all proteins showed higher chances of localizing to mitochon-
dria in COPD than in normal tissue. Seven of them were mitochon-
drial ribosomal proteins, and other proteins, such as CYC1, AT-
P5C1, NDUFA12, C1QBP, ATP5A1, SDHB, ATP5O, ECH1, 
ACADVL, and SFXN3, acted on the matrix of mitochondria. Col-
lectively, proteins targeting mitochondria might be influenced by 

mitochondrial dysfunction in COPD. 

Discussion 

COPD is a complex and heterogeneous disease, and thus, it is not 
easy to investigate the pathogenesis and diagnosis of COPD [3]. 
Previously, Kim et al. [10] performed RNA-seq analysis with 98 
COPD samples and 91 normal samples. However, DEGs identi-
fied by a simple calculation of fold-change in gene expression lev-
el might not be useful—especially in this study: COPD versus 
normal (Fig. 1A). The heterogeneity might be attributed to a 
number of different pathological processes. Among them, bacte-
ria have been reported as one of the major causes in the exacerba-
tion of COPD, contributing to the severe inflammatory response 
in the 13 airways [32]. While mild-to-moderate COPD exhibits 
higher diversity in the bacterial population [33], severe COPD 
shows lower diversity [34]. 

We confirmed that our COPD data were in the mild stage, 
based on the expression levels of known marker genes (Fig. 1B). 
These COPD samples exhibited a marginal but consistent rise in 
combinatorial diversity in all BCR and TCR loci (Fig. 1C, Sup-
plementary Fig. 1). It is possible that increased diversity of the 
microbiome in the mild stage of COPD led to increased diversity 
of BCR and TCR loci. Accordingly, a lower level of similarity was 
observed between COPD samples compared with normal sam-
ples (Fig. 1D, Supplementary Fig. 2). 

Our analysis pipeline to identify DEGs was performed consider-
ing two aspects: heterogeneity and confidence (Fig. 2A). First, 
computational deconvolution reduced the heterogeneity between 
COPD samples. Second, integrative statistical tests were applied to 
identify confident DEGs. It is known that a combination of t-test, 
Wilcoxon test, and median difference test can reduce the overesti-
mation by removing biases [35], because conventional t-test-based 
tools tend to calculate p-values too optimistically when they are ap-
plied to a large number of samples [10]. 

By reducing the heterogeneity, gene expression profiles of COPD 
samples could become consistent with known expression patterns 
of marker genes. The DEGs that were identified in our pipeline 
were better in distinguishing COPD from normal subjects than 
previously defined DEGs (Fig. 3A and 3B). Through deconvolu-
tion, gene expression profiles among COPD samples could become 
consistent when examined, based on known expression patterns of 
marker genes. Acute-phase proteins, such as CRP, acute-phase se-
rum amyloid A, and fibrinogens, are well known and are induced in 
response to inflammation and in COPD [26]. IL6, CXCL8 (IL8), 
TNF (TNF α), and CSF2 (GM-CSF) are airway inflammatory cy-
tokines that are up-regulated in COPD patients [27,28]. The levels 
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Fig. 5. Differentially expressed pairs (DEPs) between chronic obstructive pulmonary disease (COPD) and normal (NOR) samples. (A) Pipeline 
to predict protein sublocalization from gene expression profiles. (B) Maximal information coefficient (MIC) scores for describing coexpression 
changes between two genes. Red and blue dots represent up-regulated and downregulated pairs in COPD compared with NOR samples, 
respectively. (C) Principal component analysis plot depicting relative similarities between COPD (red) and NOR samples (blue) using DEPs. (D) 
Venn diagram showing overlap between differentially expressed genes (DEGs) and DEPs. DCGP, differentially co-expressed gene pairs. p-values 
were calculated by hypergeometric test.
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of immune receptors, such as TLR2, 14 TLR4, and IL1R1, increase 
with smoking [29], but the levels of surfactant protein D decrease 
[30]. Regardless of deconvolution, some acute-phase proteins 
(FGA, FGG), cytokines (IL6, CXCL8), and immune receptors 
were consistently up-regulated in COPD. However, CRP and FGB 
were up-regulated and SFTPD was down-regulated in COPD only 
after deconvolution. Moreover, TNF and CSF2 were no longer sig-
nificantly down-regulated. These observations could be identified, 
because sample heterogeneity was considered in the analysis. 

Up-regulated genes in COPD were related with to functions, 
such as smooth muscle cell proliferation, protein autophosphoryla-
tion, and wound healing (Fig. 3C), consistent with a previous re-
port that oxidative stress-induced mitochondrial dysfunction in-
duces inflammation and airway smooth muscle remodeling in 
COPD [36]. On the other hand, down-regulated genes in COPD 
were relevant to translational elongation, oxidative phosphorylation 

coupled to electron transport in mitochondria, and, in particular, 
neurodegenerative disorders (Fig. 3D), agreeing that COPD pa-
tients are likely to develop specific cognitive impairments [37]. 

Identification of protein interaction subnetworks shed light on 
specific functions of interaction modules related to the typical phe-
notypes of COPD (Fig. 4). Functions related to the regulation of 
transcription, vesicle-mediated transport, regulation of apoptosis, 
and immune system processes were only observed in subnetworks, 
not in DEGs. Furthermore, antigen presentation was more con-
fined to MHC class II. In this analysis, the levels of MHC class II 
genes and some immune components decreased, whereas other 
immune components were down-regulated in COPD, showing the 
complexity of immune responses in COPD. 

One attractive subnetwork associated with vesicle-mediated 
transport raised the question of whether protein subcellular local-
ization plays some role in COPD. A group of proteins with subcel-

Fig. 6. Prediction of protein subcellular localization changes between chronic obstructive pulmonary disease (COPD) and normal (NOR) samples. 
(A) The correlation scores between NDUFA12 and other mitochondrial proteins in NOR and COPD samples. The thickness and color of the edges 
were determined by maximal information coefficient (MIC). (B) Genes with significant subcellular localization changes between COPD and NOR 
samples. (C) Heatmap demonstrating probability of changes in mitochondria-related proteins.
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lular localization changes in COPD were predicted by measuring 
co-expression scores using information on protein interaction and 
subcellular localization (Figs. 5 and 6).  Interestingly, one-quarter of 
predicted changes were related to mitochondria, suggesting that 
proteins targeting mitochondria might be influenced by mitochon-
drial dysfunction. Mitochondrial ribosomal proteins and other pro-
teins on the mitochondrial matrix were enriched in mitochondria 
in COPD cases. 

Here, we used public gene expression profiles generated from 
COPD and normal subjects and re-evaluated the differential tran-
scriptomes by removing sample heterogeneity. The overall data 
analysis revealed a group of gene expression changes that were 
missed in previous research. Co-expression relationships between 
conditions could be inferred from gene expression profiles and 
might be useful in classifying samples and predicting protein sub-
cellular localization. In conclusion, COPD is a complex and hetero-
geneous disease. The newly identified DEGs in this study and 
DCGPs could partially explain COPD pathogenesis in the mild 
stage. We expect that our strategy of analyzing heterogeneous sam-
ples will be applicable to other systems. 
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