1. Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 2002;10:100–103.
3. Guirakhoo F, Bolin RA, Roehrig JT. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 1992;191:921–931.
4. Meng F, Badierah RA, Almehdar HA, Redwan EM, Kurgan L, Uversky VN. Unstructural biology of the Dengue virus proteins. FEBS J 2015;282:3368–3394.
5. Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D,
et al. Structures of immature flavivirus particles. EMBO J 2003;22:2604–2613.
6. Randolph VB, Winkler G, Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 1990;174:450–458.
10. Wong SS, Haqshenas G, Gowans EJ, Mackenzie J. The dengue virus M protein localises to the endoplasmic reticulum and forms oligomers. FEBS Lett 2012;586:1032–1037.
12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H,
et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948.
13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425.
16. Salamov AA, Solovyev VV. Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 1995;247:11–15.
17. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR,
et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021;373:871–876.
18. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G,
et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50:D439–D444.
22. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins 2005;60:224–231.
23. Abraham M, Hess B, van der Spoel D, Lindahl E, GROMACS Development Team. GROMACS User Manual Version 2018. Uppsala: GROMACS Development Team, Royal Institute of Technology and Uppsala University, 2019. Accessed 2023 Apr 25 Available from:
http://www.gromacs.org.
25. Bekker H, Berendsen HJ, Dijkstra EJ, Achterop S, Vondrumen R, Vanderspoel D, et al. Gromacs: a parallel computer for molecular-dynamics simulations. In: Physics Computing '92. (DeGroot RA, Nadrchal J, eds.). Singapore: World Scientific Publishing, 1993. pp. 252–256.
28. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015;1263:243–250.
30. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL,
et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 2017;14:71–73.
31. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J,
et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010;31:671–690.
35. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC,
et al. UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–1612.
36. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504.
40. Krishnappa CM, Rai P, Zeba A, Ganjiwale A. Residue interaction network analysis and molecular dynamics simulation of 6K viroporin: Chikungunya virus channel proteins. Int J Comput Biol Drug Design [Epub].
https://doi.org/10.1504/IJCBDD.2023.10056106.
41. Acharya R, Carnevale V, Fiorin G, Levine BG, Polishchuk AL, Balannik V,
et al. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc Natl Acad Sci U S A 2010;107:15075–15080.
42. Jimenez-Guardeno JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castano-Rodriguez C,
et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 2014;10:e1004320.