1. Chou CH, Chou YE, Chuang CY, Yang SF, Lin CW. Combined effect of genetic polymorphisms of
AURKA and environmental factors on oral cancer development in Taiwan. PLoS One 2017;12:e0171583.
2. Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol 2015;8:11884–11894.
6. Mehrotra R, Singh M, Kumar D, Pandey AN, Gupta RK, Sinha US. Age specific incidence rate and pathological spectrum of oral cancer in Allahabad. Indian J Med Sci 2003;57:400–404.
11. Ries LA, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L,
et al. SEER cancer statistics review, 1975-2002. Bethesda: Natioanl Cancer Institute, 2022. Accessed 2022 Jun 10. Available from:
https://seer.cancer.gov/archive/csr/1975_2002/.
12. Torabi M, Haghani J, Hashemipour MA, Ebrahimi M. Mast cells density in hyperkeratosis, dysplastic oral mucosa and oral squamous cell carcinoma. Avicenna J Dent Res 2018;10:67–70.
13. Chawla JP, Iyer N, Soodan KS, Sharma A, Khurana SK, Priyadarshni P. Role of miRNA in cancer diagnosis, prognosis, therapy and regulation of its expression by Epstein-Barr virus and human papillomaviruses: with special reference to oral cancer. Oral Oncol 2015;51:731–737.
14. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006;15 Spec No 1:R17–R29.
18. Cheng G, Danquah M, Mahato RI. MicroRNAs as therapeutic targets for cancer. In: Pharmaceutical Perspectives of Cancer Therapeutics (Lu Y, Mahato RI, eds.). New York: Springer, 2009. pp. 441–444.
19. Shiah SG, Hsiao JR, Chang WM, Chen YW, Jin YT, Wong TY,
et al. Downregulated miR329 and miR410 promote the proliferation and invasion of oral squamous cell carcinoma by targeting Wnt-7b. Cancer Res 2014;74:7560–7572.
20. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,
et al. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res 2013;41:D991–D995.
21. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2013.
24. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL,
et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 2011;39:D163–D169.
25. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S,
et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021;49:D605–D612.
26. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011;27:431–432.
31. Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013;45:580–585.
34. Noorbakhsh F, Rezaie F, Abdolmaleki M, Ghasemi N, Abdollahi B, Nojan F,
et al. Dental students’ awareness about prevention, early diagnosis and referral of patients with oral cancers in Tabriz in 2018. Avicenna J Den Res 2018;10:89–94.
35. Bautista-Sanchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velazquez IA, Gonzalez-Barrios R, Contreras-Espinosa L,
et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids 2020;20:409–420.
38. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007;282:14328–14336.
40. Amirfallah A, Knutsdottir H, Arason A, Hilmarsdottir B, Johannsson OT, Agnarsson BA,
et al. Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways. PLoS One 2021;16:e0260327.
42. Crimi S, Falzone L, Gattuso G, Grillo CM, Candido S, Bianchi A,
et al. Droplet digital PCR analysis of liquid biopsy samples unveils the diagnostic role of hsa-miR-133a-3p and hsa-miR-375-3p in oral cancer. Biology (Basel) 2020;9:379.
43. Xu X, Chen X, Xu M, Liu X, Pan B, Qin J,
et al. miR-375-3p suppresses tumorigenesis and partially reverses chemoresistance by targeting YAP1 and SP1 in colorectal cancer cells. Aging (Albany NY) 2019;11:7357–7385.
45. Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim Biophys Acta 2014;1843:398–435.
47. Chin D, Means AR. Calmodulin: a prototypical calcium sensor. Trends Cell Biol 2000;10:322–328.
50. Zamanian Azodi M, Rezaei Tavirani M, Rezaei Tavirani M, Vafaee R, Rostami-Nejad M. Nasopharyngeal carcinoma protein interaction mapping analysis via proteomic approaches. Asian Pac J Cancer Prev 2018;19:845–851.
51. Adrain C, Martin SJ. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 2001;26:390–397.
52. Barczyk K, Kreuter M, Pryjma J, Booy EP, Maddika S, Ghavami S,
et al. Serum cytochrome c indicates
in vivo apoptosis and can serve as a prognostic marker during cancer therapy. Int J Cancer 2005;116:167–173.
53. Bayat Z, Farhadi Z, Taherkhani A. Identification of potential biomarkers associated with poor prognosis in oral squamous cell carcinoma through integrated bioinformatics analysis: a pilot study. Gene Rep 2021;24:101243.
54. Hayashido Y, Nakashima M, Urabe K, Yoshioka H, Yoshioka Y, Hamana T,
et al. Role of stromal thrombospondin-1 in motility and proteolytic activity of oral squamous cell carcinoma cells. Int J Mol Med 2003;12:447–452.
55. Alvarez AA, Axelrod JR, Whitaker RS, Isner PD, Bentley RC, Dodge RK,
et al. Thrombospondin-1 expression in epithelial ovarian carcinoma: association with p53 status, tumor angiogenesis, and survival in platinum-treated patients. Gynecol Oncol 2001;82:273–278.
56. Tuszynski GP, Nicosia RF. Localization of thrombospondin and its cysteine-serine-valine-threonine-cysteine-glycine-specific receptor in human breast carcinoma. Lab Invest 1994;70:228–233.
58. Chen CR, Kang Y, Massague J. Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci U S A 2001;98:992–999.
59. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO,
et al.
MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039–1043.
60. Peng SY, Lai PL, Hsu HC. Amplification of the c-myc gene in human hepatocellular carcinoma: biologic significance. J Formos Med Assoc 1993;92:866–870.
61. Pai R, Pai S, Lalitha R, Kumaraswamy S, Lalitha N, Johnston R,
et al. Over-expression of c-Myc oncoprotein in oral squamous cell carcinoma in the South Indian population. Ecancermedicalscience 2009;3:128.
62. Chen YJ, Lin SC, Kao T, Chang CS, Hong PS, Shieh TM,
et al. Genome-wide profiling of oral squamous cell carcinoma. J Pathol 2004;204:326–332.
64. Martinelli P, Carrillo-de Santa Pau E, Cox T, Sainz B Jr, Dusetti N, Greenhalf W,
et al. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 2017;66:1665–1676.
65. Tsuji S, Kawasaki Y, Furukawa S, Taniue K, Hayashi T, Okuno M,
et al. The miR-363-GATA6-Lgr5 pathway is critical for colorectal tumourigenesis. Nat Commun 2014;5:3150.
66. Sulahian R, Casey F, Shen J, Qian ZR, Shin H, Ogino S,
et al. An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene 2014;33:5637–5648.
67. Deng X, Jiang P, Chen J, Li J, Li D, He Y,
et al. GATA6 promotes epithelial-mesenchymal transition and metastasis through MUC1/beta-catenin pathway in cholangiocarcinoma. Cell Death Dis 2020;11:860.
68. Deng L, Liu H. MicroRNA-506 suppresses growth and metastasis of oral squamous cell carcinoma via targeting GATA6. Int J Clin Exp Med 2015;8:1862–1870.
69. King JA, Corcoran NM, D'Abaco GM, Straffon AF, Smith CT, Poon CL,
et al. Eve-3: a liver enriched suppressor of Ras/MAPK signaling. J Hepatol 2006;44:758–767.
71. He Z, Gong F, Liao J, Wang Q, Su Y, Chen C,
et al. Spred-3 mutation and Ras/Raf/MAPK activation confer acquired resistance to EGFR tyrosine kinase inhibitor in an EGFR mutated NSCLC cell line. Transl Cancer Res 2020;9:2542–2555.
73. Espinoza-Sanchez NA, Gotte M. Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2020;62:48–67.
74. Ahrens TD, Bang-Christensen SR, Jorgensen AM, Loppke C, Spliid CB, Sand NT,
et al. The role of proteoglycans in cancer metastasis and circulating tumor cell analysis. Front Cell Dev Biol 2020;8:749.