2. Sinnenberg L, Buttenheim AM, Padrez K, Mancheno C, Ungar L, Merchant RM. Twitter as a tool for health research: a systematic review. Am J Public Health 2017;107:e1–e8.
4. Masri S, Jia J, Li C, Zhou G, Lee MC, Yan G,
et al. Use of Twitter data to improve Zika virus surveillance in the United States during the 2016 epidemic. BMC Public Health 2019;19:761.
6. Vos SC, Buckner MM. Social media messages in an emerging health crisis: Tweeting bird flu. J Health Commun 2016;21:301–308.
9. Rufai SR, Bunce C. World leaders' usage of Twitter in response to the COVID-19 pandemic: a content analysis. J Public Health (Oxf) 2020;42:510–516.
11. Mackey T, Purushothaman V, Li J, Shah N, Nali M, Bardier C,
et al. Machine learning to detect self-reporting of symptoms, testing access, and recovery associated with COVID-19 on Twitter: retrospective big data infoveillance study. JMIR Public Health Surveill 2020;6:e19509.
13. Webb H, Jirotka M, Stahl BC, Housley W, Edwards A, Williams M,
et al. The ethical challenges of publishing Twitter data for research dissemination. In: Proceedings of the 2017 ACM on Web Science Conference, 2017 Jun 25-28; Troy, NY, USA: New York: Association for Computing Machinery, 2017. pp 339–348.
14. Hino A, Fahey RA. Representing the Twittersphere: archiving a representative sample of Twitter data under resource constraints. Int J Inf Manage 2019;48:175–184.
18. Gupta RK, Vishwanath A, Yang Y. Global reactions to COVID-19 on Twitter: a labelled dataset with latent topic, sentiment and emotion attributes. Preprint at:
http://arxiv.org/abs/2007.06954 (2021).
20. Banda JM, Tekumalla R, Wang G, Yu J, Liu T, Ding Y,
et al. A large-scale COVID-19 Twitter chatter dataset for open scientific research: an international collaboration. Epidemiologia 2021;2:315–324.
24. Callahan TJ, Tripodi IJ, Hunter LE, Baumgartner WA Jr. KG-COVID-19: a framework to produce customized knowledge graphs for COVID-19 response. Preprint at:
https://doi.org/10.1101/2020.04.30.071407 (2020).
25. Reese JT, Unni D, Callahan TJ, Cappelletti L, Ravanmehr V, Carbon S,
et al. KG-COVID-19: a framework to produce customized knowledge graphs for COVID-19 response. Patterns (N Y) 2021;2:100155.
28. Neumann M, King D, Beltagy I, Ammar W. ScispaCy: fast and robust models for biomedical natural language processing. New York: Association for Computational Linguistics, 2019. Accessed 2021 Mar 9.
https://doi.org/10.18653/v1/W19-5034.
30. Explosion AI. spaCy-Industrial-strength Natural Language Processing in Python. Explosion AI, 2017. Accessed 2021 Mar 9. Available from:
https://spacy.io/.
33. Donnelly K. SNOMED-CT: the advanced terminology and coding system for eHealth. Stud Health Technol Inform 2006;121:279–290.