1. Eroschenko VP. DiFiore’s Atlas of Histology with Functional Correlations. Philadelphia: Lippincott Williams & Wilkins, 2008. pp. 31.
2. Bridda A, Padoan I, Mencarelli R, Frego M. Peritoneal mesothelioma: a review. MedGenMed 2007;9:32.
5. Wang Y, Zheng T. Screening of hub genes and pathways in colorectal cancer with microarray technology. Pathol Oncol Res 2014;20:611–618.
6. Cai Y, Mei J, Xiao Z, Xu B, Jiang X, Zhang Y,
et al. Identification of five hub genes as monitoring biomarkers for breast cancer metastasis in silico. Hereditas 2019;156:20.
8. Xiu MX, Zeng B, Kuang BH. Identification of hub genes, miRNAs and regulatory factors relevant for Duchenne muscular dystrophy by bioinformatics analysis. Int J Neurosci 2020 Aug 26 [Epub].
https://doi.org/10.1080/00207454.2020.1810030.
9. Khan A, Rehman Z, Hashmi HF, Khan AA, Junaid M, Sayaf AM,
et al. An integrated systems biology and network-based approaches to identify novel biomarkers in breast cancer cell lines using gene expression data. Interdiscip Sci 2020;12:155–168.
10. Yang W, Zhao X, Han Y, Duan L, Lu X, Wang X,
et al. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int 2019;19:142.
12. Zhang X, Yang L, Chen W, Kong M. Identification of potential hub genes and therapeutic drugs in malignant pleural mesothelioma by integrated bioinformatics analysis. Oncol Res Treat 2020;43:656–671.
15. Sciarrillo R, Wojtuszkiewicz A, El Hassouni B, Funel N, Gandellini P, Lagerweij T,
et al. Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma. EBioMedicine 2019;39:215–225.
16. Shrestha R, Nabavi N, Lin YY, Mo F, Anderson S, Volik S,
et al. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med 2019;11:8.
17. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,
et al. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res 2013;41:D991–D995.
19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W,
et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47.
20. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z,
et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44:W90–W97.
22. The Gene Ontology C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 2019;47:D330–D338.
23. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2019;47:D590–D595.
24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545–15550.
25. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet 2006;38:500–501.
26. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015;1:417–425.
27. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–D613.
28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504.
30. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014;8 Suppl 4:S11.
31. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016;17:719–732.
32. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018;9:402.
35. Bhullar KS, Lagaron NO, McGowan EM, Parmar I, Jha A, Hubbard BP,
et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 2018;17:48.
38. Hmeljak J, Sanchez-Vega F, Hoadley KA, Shih J, Stewart C, Heiman D,
et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov 2018;8:1548–1565.
39. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR,
et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46:D1074–D1082.
42. Ali G, Borrelli N, Riccardo G, Proietti A, Pelliccioni S, Niccoli C,
et al. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia. J Thorac Oncol 2013;8:1389–1395.
43. Guo C, Liu S, Sun MZ. Novel insight into the role of GAPDH playing in tumor. Clin Transl Oncol 2013;15:167–172.
46. Delrieu I, Arnaud E, Ferjoux G, Bayard F, Faye JC. Overexpression of the FGF-2 24-kDa isoform up-regulates IL-6 transcription in NIH-3T3 cells. FEBS Lett 1998;436:17–22.
47. Larsson LG, Henriksson MA. The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010;316:1429–1437.
48. Okuyama H, Endo H, Akashika T, Kato K, Inoue M. Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res 2010;70:10213–10223.
49. Szabo PM, Racz K, Igaz P. Underexpression of C-myc in adrenocortical cancer: a major pathogenic event? Horm Metab Res 2011;43:297–299.
50. Sun H, Zhang X, Sun D, Jia X, Xu L, Qiao Y,
et al. COX-2 expression in ovarian cancer: an updated meta-analysis. Oncotarget 2017;8:88152–88162.
51. Ha M, Son YR, Kim J, Park SM, Hong CM, Choi D,
et al. TEK is a novel prognostic marker for clear cell renal cell carcinoma. Eur Rev Med Pharmacol Sci 2019;23:1451–1458.
52. Cui S, Huang F, Yu F, Jian S, Zhang L, Liu X,
et al. Identification of important genes and pathways leading to poor prognosis of non-small cell lung cancer using Integrated Bioinformatics. Preprint at:
https://doi.org/10.21203/rs.3.rs-34440/v1 (2020).
54. Nader JS, Abadie J, Deshayes S, Boissard A, Blandin S, Blanquart C,
et al. Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma. Oncotarget 2018;9:16311–16329.
55. Ma B, Wang J, Song Y, Gao P, Sun J, Chen X,
et al. Upregulated long intergenic noncoding RNA KRT18P55 acts as a novel biomarker for the progression of intestinal-type gastric cancer. Onco Targets Ther 2016;9:445–453.
56. Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer 2008;44:46–53.
57. Yu L, Feng M, Kim H, Phung Y, Kleiner DE, Gores GJ,
et al. Mesothelin as a potential therapeutic target in human cholangiocarcinoma. J Cancer 2010;1:141–149.
59. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS,
et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320–1323.
60. Saito K, Sakaguchi M, Iioka H, Matsui M, Nakanishi H, Huh NH,
et al. Coxsackie and adenovirus receptor is a critical regulator for the survival and growth of oral squamous carcinoma cells. Oncogene 2014;33:1274–1286.
61. El Bezawy R, De Cesare M, Pennati M, Deraco M, Gandellini P, Zuco V,
et al. Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET and AXL inhibition: persistent activation of ERK and AKT signaling as a possible cytoprotective mechanism. J Hematol Oncol 2017;10:19.