1. Labarthe DR, Dunbar SB. Global cardiovascular health promotion and disease prevention: 2011 and beyond. Circulation 2012;125:2667–2676.
3. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P,
et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med 2020;2:1069–1076.
6. Kreatsoulas C, Anand SS. The impact of social determinants on cardiovascular disease. Can J Cardiol 2010;26 Suppl C:8C–13C.
7. Cambien F, Tiret L. Genetics of cardiovascular diseases: from single mutations to the whole genome. Circulation 2007;116:1714–1724.
8. Morrison N, Cochrane G, Faruque N, Tatusova T, Tateno Y, Hancock D,
et al. Concept of sample in OMICS technology. OMICS 2006;10:127–137.
11. Yancy CW, Benjamin EJ, Fabunmi RP, Bonow RO. Discovering the full spectrum of cardiovascular disease: Minority Health Summit 2003: executive summary. Circulation 2005;111:1339–1349.
12. Horgan RP, Kenny LC. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol 2011;13:189–195.
13. Schneider MV, Orchard S. Omics technologies, data and bioinformatics principles. Methods Mol Biol 2011;719:3–30.
14. Ussher JR, Elmariah S, Gerszten RE, Dyck JR. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol 2016;68:2850–2870.
15. Azuaje F, Devaux Y, Wagner D. Computational biology for cardiovascular biomarker discovery. Brief Bioinform 2009;10:367–377.
16. Shameer K, Badgeley MA, Miotto R, Glicksberg BS, Morgan JW, Dudley JT. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform 2017;18:105–124.
17. Gottesman O, Scott SA, Ellis SB, Overby CL, Ludtke A, Hulot JS,
et al. The CLIPMERGE PGx Program: clinical implementation of personalized medicine through electronic health records and genomics-pharmacogenomics. Clin Pharmacol Ther 2013;94:214–217.
18. Haarbrandt B, Tute E, Marschollek M. Automated population of an i2b2 clinical data warehouse from an openEHR-based data repository. J Biomed Inform 2016;63:277–294.
19. Woo A, Rakowski H, Liew JC, Zhao MS, Liew CC, Parker TG,
et al. Mutations of the beta myosin heavy chain gene in hypertrophic cardiomyopathy: critical functional sites determine prognosis. Heart 2003;89:1179–1185.
21. Podgoreanu MV, Schwinn DA. Genomics and the circulation. Br J Anaesth 2004;93:140–148.
22. Podgoreanu MV, Schwinn DA. New paradigms in cardiovascular medicine: emerging technologies and practices: perioperative genomics. J Am Coll Cardiol 2005;46:1965–1977.
23. Liew CC, Dzau VJ. Molecular genetics and genomics of heart failure. Nat Rev Genet 2004;5:811–825.
25. Yates JR 3rd. Mass spectrometry and the age of the proteome. J Mass Spectrom 1998;33:1–19.
26. Qin J, Fenyo D, Zhao Y, Hall WW, Chao DM, Wilson CJ,
et al. A strategy for rapid, high-confidence protein identification. Anal Chem 1997;69:3995–4001.
27. Muller EC, Thiede B, Zimny-Arndt U, Scheler C, Prehm J, Muller-Werdan U,
et al. High-performance human myocardial two-dimensional electrophoresis database: edition 1996. Electrophoresis 1996;17:1700–1712.
28. Dunn MJ. Studying heart disease using the proteomic approach. Drug Discov Today 2000;5:76–84.
29. Wu AH. Early detection of acute coronary syndromes and risk stratification by multimarker analysis. Biomark Med 2007;1:45–57.
30. Tu WJ, Liu Q, Cao JL, Zhao SJ, Zeng XW, Deng AJ. Gamma-glutamyl transferase as a risk factor for all-cause or cardiovascular disease mortality among 5912 ischemic stroke. Stroke 2017;48:2888–2891.
31. Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 2005;563:23–60.
32. Fu Q, Van Eyk JE. Proteomics and heart disease: identifying biomarkers of clinical utility. Expert Rev Proteomics 2006;3:237–249.
33. Mayr M, Zhang J, Greene AS, Gutterman D, Perloff J, Ping P. Proteomics-based development of biomarkers in cardiovascular disease: mechanistic, clinical, and therapeutic insights. Mol Cell Proteomics 2006;5:1853–1864.
34. Arnett DK, Claas SA. Omics of Blood Pressure and Hypertension. Circ Res 2018;122:1409–1419.
35. Gomes CP, Agg B, Andova A, Arslan S, Baker A, Bartekova M,
et al. Catalyzing transcriptomics research in cardiovascular disease: the CardioRNA COST Action CA17129. Noncoding RNA 2019;5:31.
36. Wu PY, Chandramohan R, Phan JH, Mahle WT, Gaynor JW, Maher KO,
et al. Cardiovascular transcriptomics and epigenomics using next-generation sequencing: challenges, progress, and opportunities. Circ Cardiovasc Genet 2014;7:701–710.
37. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y,
et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018;39:1073–1084.
38. Alavi-Moghaddam M, Chehrazi M, Alipoor SD, Mohammadi M, Baratloo A, Mahjoub MP,
et al. A Preliminary study of microRNA-208b after acute myocardial infarction: impact on 6-month survival. Dis Markers 2018;2018:2410451.
39. Rath M, Pauling L. A unified theory of human cardiovascular disease leading the way to the abolition of this disease as a cause for human mortality. J Orthomol Med 1992;7:5–15.
40. Tahir UA, Gerszten RE. Omics and cardiometabolic disease risk prediction. Annu Rev Med 2020;71:163–175.
42. Polonis K, Wawrzyniak R, Daghir-Wojtkowiak E, Szyndler A, Chrostowska M, Melander O,
et al. Metabolomic signature of early vascular aging (EVA) in hypertension. Front Mol Biosci 2020;7:12.