1. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev 2015;16:1–12.
2. Sookoian S, Pirola CJ. Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep 2011;13:149–157.
4. Yki-Jarvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014;2:901–910.
5. Esposito K, Chiodini P, Capuano A, Bellastella G, Maiorino MI, Rafaniello C,
et al. Colorectal cancer association with metabolic syndrome and its components: a systematic review with meta-analysis. Endocrine 2013;44:634–647.
7. Ni J, Zhu T, Zhao L, Che F, Chen Y, Shou H,
et al. Metabolic syndrome is an independent prognostic factor for endometrial adenocarcinoma. Clin Transl Oncol 2015;17:835–839.
8. Esposito K, Chiodini P, Capuano A, Bellastella G, Maiorino MI, Giugliano D. Metabolic syndrome and endometrial cancer: a meta-analysis. Endocrine 2014;45:28–36.
9. Gacci M, Russo GI, De Nunzio C, Sebastianelli A, Salvi M, Vignozzi L,
et al. Meta-analysis of metabolic syndrome and prostate cancer. Prostate Cancer Prostatic Dis 2017;20:146–155.
10. Mendonca FM, de Sousa FR, Barbosa AL, Martins SC, Araujo RL, Soares R,
et al. Metabolic syndrome and risk of cancer: which link? Metabolism 2015;64:182–189.
11. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006;444:881–887.
12. Eftekharzadeh A, Asghari G, Serahati S, Hosseinpanah F, Azizi A, Barzin M,
et al. Predictors of incident obesity phenotype in nonobese healthy adults. Eur J Clin Invest 2017;47:357–365.
13. Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, Kullo IJ,
et al. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 2011;60:1329–1339.
15. Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, Havulinna AS,
et al. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet 2012;5:242–249.
16. Coram MA, Duan Q, Hoffmann TJ, Thornton T, Knowles JW, Johnson NA,
et al. Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am J Hum Genet 2013;92:904–916.
18. Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA,
et al. Novel genetic loci identified for the patho-physiology of childhood obesity in the Hispanic population. PLoS One 2012;7:e51954.
19. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J,
et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 2009;41:35–46.
20. Fox CS, Liu Y, White CC, Feitosa M, Smith AV, Heard-Costa N,
et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 2012;8:e1002695.
21. Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol 2015;40:99–106.
22. Rochlani Y, Pothineni NV, Mehta JL. Metabolic syndrome: does it differ between women and men? Cardiovasc Drugs Ther 2015;29:329–338.
24. Sun K, Ren M, Liu D, Wang C, Yang C, Yan L. Alcohol consumption and risk of metabolic syndrome: a meta-analysis of prospective studies. Clin Nutr 2014;33:596–602.
25. Shin HS, Oh JE, Cho YJ. The association between smoking cessation period and metabolic syndrome in Korean men. Asia Pac J Public Health 2018;30:415–424.
26. Lee C, Choe EK, Choi JM, Hwang Y, Lee Y, Park B,
et al. Health and Prevention Enhancement (H-PEACE): a retrospective, population-based cohort study conducted at the Seoul National University Hospital Gangnam Center, Korea. BMJ Open 2018;8:e019327.
27. Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group. The metabolic syndrome: a new worldwide definition. Lancet 2005;366:1059–1062.
29. Abdo A, Chen B, Mueller C, Salim N, Willett P. Ligand-based virtual screening using Bayesian networks. J Chem Inf Model 2010;50:1012–1020.
30. Plewczynski D, von Grotthuss M, Rychlewski L, Ginalski K. Virtual high throughput screening using combined random forest and flexible docking. Comb Chem High Throughput Screen 2009;12:484–489.
31. Che D, Hockenbury C, Marmelstein R, Rasheed K. Classification of genomic islands using decision trees and their ensemble algorithms. BMC Genomics 2010;11( Suppl 2):S1.
32. Jorissen RN, Gilson MK. Virtual screening of molecular databases using a support vector machine. J Chem Inf Model 2005;45:549–561.
35. Pajunen P, Kotronen A, Korpi-Hyovalti E, Keinanen-Kiukaanniemi S, Oksa H, Niskanen L,
et al. Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D Survey. BMC Public Health 2011;11:754.
36. Phillips CM, Perry IJ. Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab 2013;98:E1610–E1619.
37. Bo S, Ciccone G, Pearce N, Merletti F, Gentile L, Cassader M,
et al. Prevalence of undiagnosed metabolic syndrome in a population of adult asymptomatic subjects. Diabetes Res Clin Pract 2007;75:362–365.
38. Blanco R, Inza I, Merino M, Quiroga J, Larranaga P. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. J Biomed Inform 2005;38:376–388.
40. Zelic I, Kononenko I, Lavrac N, Vuga V. Induction of decision trees and Bayesian classification applied to diagnosis of sport injuries. J Med Syst 1997;21:429–444.