1. Kooperberg C, LeBlanc M, Obenchain V. Risk prediction using genome-wide association studies. Genet Epidemiol 2010;34:643–652. PMID:
20842684.
2. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S,
et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 1994;266:120–122. PMID:
7939630.
3. Lancaster JM, Wooster R, Mangion J, Phelan CM, Cochran C, Gumbs C,
et al. BRCA2 mutations in primary breast and ovarian cancers. Nat Genet 1996;13:238–240. PMID:
8640235.
4. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ,
et al. Finding the missing heritability of complex diseases. Nature 2009;461:747–753. PMID:
19812666.
5. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005;6:109–118. PMID:
15716907.
6. International Schizophrenia Consortium. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC,
et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460:748–752. PMID:
19571811.
7. Machiela MJ, Chen CY, Chen C, Chanock SJ, Hunter DJ, Kraft P. Evaluation of polygenic risk scores for predicting breast and prostate cancer risk. Genet Epidemiol 2011;35:506–514. PMID:
21618606.
8. Evans DM, Visscher PM, Wray NR. Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. Hum Mol Genet 2009;18:3525–3531. PMID:
19553258.
9. Janssens AC, van Duijn CM. Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 2008;17:R166–R173. PMID:
18852206.
10. Weedon MN, McCarthy MI, Hitman G, Walker M, Groves CJ, Zeggini E,
et al. Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS Med 2006;3:e374. PMID:
17020404.
11. van der Net JB, Janssens AC, Sijbrands EJ, Steyerberg EW. Value of genetic profiling for the prediction of coronary heart disease. Am Heart J 2009;158:105–110. PMID:
19540399.
12. Lindström S, Schumacher FR, Cox D, Travis RC, Albanes D, Allen NE,
et al. Common genetic variants in prostate cancer risk prediction: results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev 2012;21:437–444. PMID:
22237985.
13. Jostins L, Barrett JC. Genetic risk prediction in complex disease. Hum Mol Genet 2011;20:R182–R188. PMID:
21873261.
14. Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR,
et al. Performance of common genetic variants in breast-cancer risk models. N Engl J Med 2010;362:986–993. PMID:
20237344.
15. Hoerl AE. Ridge regression. Biometrics 1970;26:603.
16. Hoerl AE, Kennard RW. Ridge regression: applications to nonorthogonal problems. Technometrics 1970;12:69–82.
17. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970;12:55–67.
18. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 1996;58:267–288.
19. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol 2005;67:301–320.
20. Wei Z, Wang W, Bradfield J, Li J, Cardinale C, Frackelton E,
et al. Large sample size, wide variant spectrum, and advanced machine-learning technique boost risk prediction for inflammatory bowel disease. Am J Hum Genet 2013;92:1008–1012. PMID:
23731541.
22. Cha PC, Mushiroda T, Takahashi A, Kubo M, Minami S, Kamatani N,
et al. Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum Mol Genet 2010;19:4735–4744. PMID:
20833655.
23. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ,
et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527–534. PMID:
19396169.
24. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H,
et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 2014;42:D1001–D1006. PMID:
24316577.
26. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33:1–22. PMID:
20808728.
27. Kim J, Namkung J, Lee S, Park T. Application of structural equation models to genome-wide association analysis. Genomics Inform 2010;8:150–158.
28. Wang KS, Liu X, Owusu D, Pan Y, Xie C. Polymorphisms in the ANKS1B gene are associated with cancer, obesity and type 2 diabetes. AIMS Genet 2015;2:192–203.
29. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM,
et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889–894. PMID:
17434869.
30. Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L,
et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet 2012;44:307–311. PMID:
22344219.
31. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H,
et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 2012;44:659–669. PMID:
22581228.
32. Sung YJ, Pérusse L, Sarzynski MA, Fornage M, Sidney S, Sternfeld B,
et al. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. Int J Obes (Lond) 2016;40:662–674. PMID:
26480920.
33. Stergiakouli E, Gaillard R, Tavaré JM, Balthasar N, Loos RJ, Taal HR,
et al. Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in
ADCY3. Obesity (Silver Spring) 2014;22:2252–2259. PMID:
25044758.
34. Hall P, Lee ER, Park BU. Bootstrap-based penalty choice for the lasso, achieving oracle performance. Stat Sin 2009;19:449–471.
35. Chatterjee A, Lahiri SN. Bootstrapping Lasso estimators. J Am Stat Assoc 2011;106:608–625.
36. Eleftherohorinou H, Wright V, Hoggart C, Hartikainen AL, Jarvelin MR, Balding D,
et al. Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases. PLoS One 2009;4:e8068. PMID:
19956648.