Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes
Sungkyoung Choi, Sunghwan Bae, Taesung Park
Genomics Inform. 2016;14(4):138-148.   Published online 2016 Dec 30     DOI: https://doi.org/10.5808/GI.2016.14.4.138
Citations to this article as recorded by Crossref logo
Künstliche Intelligenz und maschinelles Lernen in der Diabetesforschung
Phong Nguyen, Alexander J. Ohnmacht, Ana Galhoz, Maren Büttner, Fabian Theis, Michael P. Menden
Der Diabetologe.2021; 17(8): 788.     CrossRef
Investigation of prediction accuracy and the impact of sample size, ancestry, and tissue in transcriptome-wide association studies
James J. Fryett, Andrew P. Morris, Heather J. Cordell
Genetic Epidemiology.2020; 44(5): 425.     CrossRef
Pure additive contribution of genetic variants to a risk prediction model using propensity score matching: application to type 2 diabetes
Chanwoo Park, Nan Jiang, Taesung Park
Genomics & Informatics.2019; 17(4): e47.     CrossRef
Genome-wide association analysis identifies multiple loci associated with kidney disease-related traits in Korean populations
Jeonghwan Lee, Young Lee, Boram Park, Sungho Won, Jin Suk Han, Nam Ju Heo, Cheng Hu
PLOS ONE.2018; 13(3): e0194044.     CrossRef
An ensemble-based likelihood ratio approach for family-based genomic risk prediction
Hui An, Chang-shuai Wei, Oliver Wang, Da-hui Wang, Liang-wen Xu, Qing Lu, Cheng-yin Ye
Journal of Zhejiang University-SCIENCE B.2018; 19(12): 935.     CrossRef