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The advances in mass spectrometry-based proteomics technologies have enabled the generation of global proteome data 
from tissue or body fluid samples collected from a broad spectrum of human diseases. Comparative proteomic analysis of 
global proteome data identifies and prioritizes the proteins showing altered abundances, called differentially expressed 
proteins (DEPs), in disease samples, compared to control samples. Protein biomarker candidates that can serve as indicators 
of disease states are then selected as key molecules among these proteins. Recently, it has been addressed that cellular 
pathways can provide better indications of disease states than individual molecules and also network analysis of the DEPs 
enables effective identification of cellular pathways altered in disease conditions and key molecules representing the altered 
cellular pathways. Accordingly, a number of network-based approaches to identify disease-related pathways and 
representative molecules of such pathways have been developed. In this review, we summarize analytical platforms for 
network-based protein biomarker discovery and key components in the platforms.
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Introduction

For a last decade, mass spectrometry (MS)-based proteomic 
technologies have emerged as a core technology to measure 
protein expression and the sites with post-translational 
modifications (PTMs) on large scales. However, MS-based 
proteome analysis has been possible for only a limited 
number of proteins and also limited in accurately detecting 
low abundant proteins and the peptides with low abundant 
PTMs [1-4]. Recent advances in high-resolution peptide 
separation, comprehensive fractionation, and high perfor-
mance MS considerably improved the proteome size and 
depth (increased numbers of proteins and PTM sites meas-
ured) and also the accuracy in quantitative information of 
proteomic data (abundances of proteins and PTM sites) [5]. 
Moreover, MS-based proteome analysis required large 
amounts of samples to measure reliably proteins and PTM 
sites. To resolve this problem, the methods for serial 
enrichments of different PTMs from the same sample have 
been developed to significantly reduce the sample amount 
required [6]. These advanced MS-based proteomic techno-
logies have facilitated the generation of proteome and PTM 
profiles in tissue and body fluid (plasma/serum, urine, 

ascites, cerebrospinal fluid, synovial fluid, saliva, and tear) 
samples collected from the patients with a broad spectrum of 
human diseases.

Comparative proteomic analysis of samples from the 
patients and healthy control subjects is commonly applied to 
identify protein biomarker candidates [7-10]. In this 
analysis, proteome profiles are first obtained for tissue or 
body fluid samples collected from the patients with a target 
disease and also healthy subjects, and the proteins showing 
altered abundances, called differentially expressed proteins 
(DEPs), in disease samples, compared to control samples are 
then identified (discovery phase) [10]. In the protein 
biomarker discovery platforms, about hundred DEPs are 
selected as an initial set of biomarker candidates, and their 
altered expression are then verified in a small cohort of the 
patients, which is independent to the patients used in the 
discovery phase (verification phase) [5]. However, the 
number of DEPs is often larger than 100, and how to select 
the initial set of biomarker candidates is not straightforward, 
although fold-changes and/or associations of the DEPs with 
pathophysiological processes in the target disease can be 
used as the criteria for selection of the initial set of biomarker 
candidates. Next, for the initial candidates whose disease- 
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Fig. 1. Basic data analysis pipeline for liquid chromatography–
tandem mass spectrometry (LC-MS/MS) data. This pipeline includes
peptide/protein identification, peptide/protein quantification, and 
identification of differentially expressed proteins (DEPs). Each of 
bioinformatics analyses in the pipeline is schematically shown 
together with the concepts and the tools. PSMs, peptide-spectrum 
matches; FDRs, false discovery rates; iCAT, isotope-coded affinity 
tag; iTRAQ, isobaric tag for relative and absolute quantitation; TMT,
tandem mass tags.

related alterations in their abundances were confirmed in the 
small cohort during the verification phase, their validity as 
biomarkers is tested in a large cohort of the patients 
(validation phase) [5]. Finally, the biomarker candidates 
whose altered expression was confirmed in the large cohort 
are selected as the final set of biomarkers.

Recently, a number of studies have reported that cellular 
pathways can serve as better indicators of disease states than 
individual molecules [11-17]. Pathway enrichment analysis 
provides a list of cellular pathways enriched by the DEPs, and 
a set of cellular pathways related to pathophysiological 
processes can be then selected as altered cellular pathways in 
the target disease. Next, we can focus on a subset of DEPs 
that are involved in the selected cellular pathways. Further-
more, network analysis for this subset of DEPs enables 
effective identification of key molecules that represent the 
selected cellular pathways as protein biomarker candidates. 
Using this approach, an initial set of biomarker candidates 
can be selected more effectively than the conventional 
criteria, such as fold-changes and associations of the DEPs 
with the target disease. Thus, several network-based approa-
ches to identify disease-related cellular pathways and 
representative proteins of such pathways have been 
developed. In this review, we summarize bioinformatics 
methods for network-based protein biomarker discovery and 
also key components in these network-based methods.

Results
Peptide and protein identification

After obtaining proteomic data from tissue or body fluid 
samples using liquid chromatography–tandem mass 
spectrometry (LC-MS/MS) analysis, the tandem mass 
spectrometry (MS/MS) spectra are first searched against a 
protein sequence database (e.g., SWISS-Prot or UniProt) to 
identify the peptide sequences for individual MS/MS spectra 
(peptide/protein identification) (Fig. 1). The detected prot-
eome size determines the depth to understand disease- 
related cellular networks based on the proteome data. Thus, 
a sufficient size of the detected proteome is a prerequisite in 
effective discovery of protein biomarkers based on disease- 
related networks. To ensure an adequate proteome size, 
accurate identification of the peptides for MS/MS spectra is 
important through database search using the engine, such as 
Mascot [18], SEQUEST [19], MS-GF＋ [20], or Paragon 
(Table 1) [21]. During the database search, a score is assigned 
by the search engine to each peptide that can be generated 
from the sequence database, which reflects the degree of the 
agreement of the measured MS/MS spectrum to the 
theoretical spectrum of the peptide. For example, SEQUEST 
assigns the scores of X-corr, deltaCorr, SPrank, and SP value to 

the peptide, whereas MS-GF＋ assigns –log10(E-value) to the 
peptide. For each measured MS/MS spectrum, the peptide 
with the largest score value is then selected, which defines a 
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Table 1. Resources for network-based protein biomarker discovery

　 Tool Website

Peptide and protein
identification

SWISS-Prot or UniProt http://www.ebi.ac.uk/uniprot

Mascot http://www.matrixscience.com/
SEQUEST http://fields.scripps.edu/sequest/
MS-GF+ http://bix-lab.ucsd.edu/pages/viewpage.action?pageId=1353

3355
Paragon http://sciex.com/products/software/proteinpilot-software
PeptideProphet http://peptideprophet.sourceforge.net/
Trans-Proteomic Pipeline (TPP) http://www.proteomecenter.org/software.php
Compid http://compid.aavalla.net/
MSblender http://www.marcottelab.org/index.php/MSblender

Protein quantitation MaxQuant http://www.coxdocs.org/doku.php?id=maxquant:start
Functional enrichment
analysis

Kyoto Encyclopedia of Genes and 
Genomes (KEGG)

http://www.genome.jp/kegg/

DAVID http://david.ncifcrf.gov/
PANTHER http://pantherdb.org/
MetaCore http://portal.genego.com/
Ingenuity Pathway Analysis 

(IPA, QIAGEN Redwood City)
http://www.qiagen.com/ingenuity

Gene set enrichment analysis (GSEA) http://software.broadinstitute.org/gsea/index.jsp
Signaling pathway impact analysis (SPIA) http://vortex.cs.wayne.edu/projects.htm

Network modeling
and analysis

Human protein reference database (HPRD) http://www.hprd.org/

Biological general repository for interaction
datasets (BioGRID)

http://thebiogrid.org/

Biomolecular interaction network database
(BIND) 

http://metadatabase.org/wiki/BIND_-_Biomolecular_Interacti
on_Network_Database

Search tool for recurring instances of 
neighbouring genes (STRING)

http://string-db.org/

Molecular INTeraction database (MINT) http://mint.bio.uniroma2.it/mint/ 
EdgeExpressDB (FANTOM4-EEDB) http://fantom.gsc.riken.jp/4/edgeexpress/about/
Transcriptional regulatory element database
(TRED)

http://cb.utdallas.edu/cgi-bin/TRED/tred.cgi?process=home

Molecular signatures database (MSigDB) http://software.broadinstitute.org/gsea/msigdb/index.jsp
jActiveModules http://apps.cytoscape.org/apps/jactivemodules
ResponseNet http://netbio.bgu.ac.il/respnet/
NetWalker https://netwalkersuite.org/
clusterMaker http://apps.cytoscape.org/apps/clustermaker

Integrative analysis of
proteomic data with
other global data

HotNet http://compbio.cs.brown.edu/projects/hotnet/

SteinerNet http://fraenkel.mit.edu/steinernet/

peptide-spectrum match (PSM).
Next, the statistical significance of the PSMs resulted 

from the database search is evaluated using a statistical 
method, such as PeptideProphet [22] in the Trans-Proteomic 
Pipeline [23] or the target-decoy method (Table 1) [24]. For 
example, for each PSM, PeptideProphet combines the scores 
(X-corr, deltaCorr, SPrank, and SP value) to an F score, and 
a mixture of Gaussian and Gamma distributions is fitted to 
the distribution of F scores for all PSMs. Using the mixture 
distribution, the probability of a PSM being true (Pepti-

deProphet p-value) is estimated [25]. Finally, the PSMs with 
PeptideProphet p-value ＞ 0.95 are selected as the correct 
PSMs. In the target-decoy method, a reverse sequence 
database was generated by inversing the reference protein 
sequence in the database and then included in the database 
prior to the database search. Using the score values for the 
PSMs in which the peptide sequence was obtained from the 
reverse sequence database, false discovery rates (FDRs) 
for all PSMs are estimated [24]. Finally, the PSMs with 
FDR ＜ 0.01 are selected as the correct PSMs. 
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Fig. 2. Schematics for functional enrichment and network analyses
of differentially expressed proteins (DEPs). Three types of functional
enrichment analyses are shown. The output from gene set enri-
chment analysis (GSEA) is displayed as an example. Also, an 
example of network model is shown, which includes functional 
modules 1–3 (cell adhesion, vasculature development, and cell 
death, respectively). Node colors in the network model represent 
up- (red) and down-regulation (green), the color gradient denotes 
log2-fold-changes of the proteins, and gray lines represent the 
connections between the nodes. GOBPs, gene ontology biological
processes; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
TGF, tumor growth factor.

Recent studies have shown that the best coverage of the 
detected proteome can be obtained by combining the 
outputs from multiple search engines. For example, Compid 
enables the integration of Paragon and Mascot (Table 1) [24] 
by assigning the peptides with higher scores from the two 
search engines to the MS/MS spectra, which can leads to 
unreliable false positive rates. Also, MSblender integrates 
the search scores from the search engines into a probability 
score for every possible PSM and then estimates FDRs for 
the PSMs in a reliable manner [26]. This method identifies 
more PSMs than any single search engine at the same FDR. 
After identifying all the PSMs from the database search, a list 
of the detected proteins are further identified. Using the 
SEQUEST search outputs, the probability that a protein is 
correctly identified (ProteinProphet p-value) is calculated by 
statistically combining the PeptideProphet p-values of the 
peptides derived from the protein, and the proteins with 
PeptideProphet p-value ＞ 0.99 are selected as the proteins 
correctly identified [22]. In the target decoy method, the 
proteins with more than two non-redundant peptides with 
FDR ＜ 0.01 can be considered as the reliable proteins [27].

Protein quantitation

Several LC-MS/MS approaches provide quantitative 
information of the peptides identified from the database 
search (protein quantification) (Fig. 1). First, prior to 
LC-MS/MS analysis, the peptides can be labeled using the 
isotopic agents, such as isotope-coded affinity tag (iCAT) 
[28], isobaric tag for relative and absolute quantitation 
(iTRAQ) [29], or tandem mass tags (TMT) [30]. For the 
iCAT data, the abundance of an identified peptide is 
estimated as the area under the elusion curve of the peptide. 
On the other hand, for the iTRAQ or TMT data, the peptide 
abundance is estimated as the intensities of the reporter ions 
in the MS/MS data [31]. Second, when no isotope labeling 
was done, called label-free LC-MS/MS analysis, the peptide 
abundance is estimated as the area under the elusion curve of 
the peptide as done for the iCAT data. Next, the relative 
abundance of an identified peptide is calculated as the ratio 
of the peptide abundances between patient and control 
samples. From the iCAT data, the ratios of the heavy and 
light peptides are calculated as the relative peptide 
abundance. To estimate the relative abundances of a protein, 
a list of the peptides derived from the proteins are identified 
and the relative abundances of these peptides are then 
combined using a method for protein quantitation, such as 
the quantification tool in MaxQuant software [32] or a linear 
programming method [33]. 

Identification of differentially expressed proteins

The biomarkers should reflect the alteration of disease- 

related pathophysiological processes in the patient samples, 
compared to controls. Thus, the DEPs between control and 
patient samples are identified as the biomarker candidates 
(identification of DEPs) (Fig. 1). A number of statistical 
methods have been developed for identification of the DEPs, 
such as t-test [34] or integrative statistical methods [35, 36], 
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with the multiple comparison correction. These methods 
compare the relative protein abundances between control 
and patient samples and then estimate the significance 
(p-value or FDR) of the difference in the relative protein 
abundances between control and patient samples methods. 
The proteins with p-value or FDR ＜ 0.01 or 0.05 are then 
selected as the DEPs. Furthermore, additional constraints 
are used to select more reliable DEPs. For example, for each 
DEP, the number of the patients showing the fold-changes 
larger than a cutoff (1.5- or 2-fold) is counted, and a subset 
of DEPs with the number of patients larger than a certain 
percentage (50% of the patients) can be selected as the 
reliable DEPs [37]. Using this criterion, we can focus on the 
DEPs that are likely to show their alterations in the 
abundance in at least more than half of the patients when 
they were used as biomarker candidates for newly collected 
patient samples.

Functional enrichment analysis

The alterations in protein abundances under disease 
conditions reflect simple clinical symptoms that are 
commonly observed in many other diseases, such as 
inflammation or immune responses, or the alterations of the 
pathophysiological processes specific to the target disease, 
such as aggregation of toxic proteins in neurodegenerative 
diseases. Thus, the DEPs that are involved in the 
disease-related pathophysiological processes can represent 
more effectively the alterations specific to the target disease 
(Fig. 2). To effectively understand the pathophysiological 
processes altered under disease conditions, functional 
enrichment analysis is often performed for the DEPs using 
diverse enrichment tools. For example, the enrichment 
analysis of gene ontology biological processes (GOBPs) or 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways can be applied to the DEPs using DAVID [38] and 
PANTHER [39], and commercial tools, such as MetaCore 
[40] and Ingenuity Pathway Analysis (IPA, QIAGEN 
Redwood City, http://www.qiagen.com/ingenuity) (Table 
1). A list of GOBPs or KEGG pathways with enrichment 
p-value ＜ 0.05 are selected as the pathophysiological 
processes or cellular pathways altered under disease 
conditions. Of these selected GOBPs and KEGG pathways, a 
subset of the GOBPs related to the target disease is further 
selected based on the knowledge of the target disease. 
Finally, a subset of the DEPs that are involved in the selected 
GOBPs or KEGG pathways related to the target disease can 
be selected as an initial set of biomarker candidates, 
considering that these DEPs are likely to be specifically 
associated with the target disease.

No enrichment analysis mentioned above consider 
quantitatively the differences in fold-changes of the DEPs, 

but consider equivalently the DEPs that were selected using 
a fixed cutoff (p-value and/or fold-changes). To remedy this 
problem, several functional class scoring methods have been 
developed, such as gene set enrichment analysis (GSEA) 
(Table 1, Fig. 2) [41]. In the GSEA, all D-changes, and the 
enrichment of functional modules defined in the database, 
such as the molecular signatures database (MSigDB) (Table 
1), by the top or bottom of the ranked protein list is 
statistically evaluated. Several alternative module-level 
statistics to the conventional GSEA have been also used, 
including Kolmogorov-Smirnov statistic and the maxmean 
statistic [42]. Moreover, as an alternative enrichment 
analysis, several pathway topology approaches have been 
developed, such as signaling pathway impact analysis (SPIA) 
[43] and network perturbation amplitude (NPA) (Table 1, 
Fig. 2) [26]. These approaches consider whether the 
proteins involved in functional modules defined by GOBP or 
GSEA database (MSigDB) interact with each other in cellular 
networks. In the SPIA, a conventional overrepresentation 
measure, as in GOBP enrichment analysis and a topology 
measure of the pathway are combined to identify functional 
modules in which the DEPs are significantly connected. In 
the NPA, the upper and lower tiers are defined as cellular 
pathways (e.g., mitogen-activated protein kinase pathway 
activation) and target genes/proteins regulated by the 
pathways in the upper tier, respectively, and positive and 
negative causal relationships are defined by the links 
between the upper and lower tiers. Then, NPA evaluates the 
causal relationships by quantitatively summarizing whether 
the expression changes of the downstream nodes are 
consistent with pathway activation, inactivation, or no 
change. These analyses provide a list of functional modules 
significantly altered under disease conditions. Similar to the 
case of the GOBP enrichment analysis, a subset of function 
modules related to the target disease can be identified, and a 
subset of DEPs involved in the identified functional modules 
can be selected as an initial set of biomarker candidates.

Network modeling and analysis

Functional molecules or cellular networks altered under 
disease conditions interact closely with each other to form a 
disease-perturbed cellular network. The network model 
enables identification of hub-like molecules that can serve as 
core indicators of the activities of cellular processes 
described in the network model. Thus, it is important to 
understand the disease-perturbed cellular network to 
identify the core indicators as the biomarker candidates. The 
core molecules and their associated cellular pathways have 
been further suggested as therapeutic targets or the 
biomarker candidates that can be used to evaluate the 
efficacy of the treatments (e.g., drug efficacy) for the target 
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Fig. 3. Integrative analysis of proteomic data with other types of 
global data. The concepts for molecular level (A) and network based
integration (B) are shown. In the top panel, two example cases (one
for tissue data and the other for serum data) are illustrated, and 
also one example case for integrative analysis of three types of 
global datasets (proteomic, mRNA expression, and DNA/histone 
methylation data) is shown. In the bottom panel, network based
integration of four types of global data using differentially expressed
molecules from them are schematically displayed. DEPs, diffe-
rentially expressed proteins; IGF, insulin-like growth factor; LC-MS/MS,
liquid chromatography–tandem mass spectrometry.

disease. Hence, the network-based approaches have been 
employed for protein biomarker discovery. 

The network-based approaches first reconstruct a 
disease-perturbed cellular network model describing the 
interactions of the DEPs or a subset of the DEPs involved in 
the selected GOBPs related to the target disease using 
protein-protein (PPIs), protein-DNA (PDIs), and/or protein- 
metabolite interactions (PMIs) in the following interactome 
databases (Table 1, Fig. 2): (1) PPI databases: human protein 
reference database (HPRD) [44], biological general 
repository for interaction datasets (BioGRID) [45], biomo-
lecular interaction network database (BIND) [46], search 
tool for recurring instances of neighbouring genes (STRING) 
[47], and Molecular INTeraction database (MINT) [48]; (2) 
PDI databases: EdgeExpressDB (FANTOM4-EEDB) [49], 
transcriptional regulatory element database (TRED) [50], 
MSigDB [41], MultiNet [51], and MetaCore [40]; and (3) 
PMI database: KEGG pathway database [52]. 

Next, the network model are analyzed to identify network 
modules or clusters each of which includes a set of the nodes 
densely connected in the network (Fig. 2). For network 
clustering or modularization, a number of methods, such as 
jActiveModules [53], ResponseNet [54], NetWalker [55], 
and clusterMaker [56], have been developed (Table 1). These 
methods can be categorized into two groups. One group, 
such as clusterMaker, searches for the node clusters based on 
the network topology information such that the nodes in the 
same cluster have dense connections, but sparse connec-
tions between the different clusters [56]. The other group, 
such as jActiveModules, uses the quantitative fold-changes 
of the nodes between control and patient samples measured 
by LC-MS/MS together with the network topology 
information. In this group, the node clusters are identified 
such that the nodes in the same clusters are densely 
connected and also show similar alteration patterns in 
protein abundance [53].

For functional interpretation of the node clusters resulted 
from network clustering, functional enrichment analyses 
mentioned above are then performed for the nodes in each 
network cluster. Of the node clusters, prior to the 
enrichment analysis, we can focus on the major network 
clusters including large numbers of the DEPs. The functional 
enrichment analysis then provide a subset of the major 
network clusters whose functions (e.g., GOBPs or KEGG 
pathways) are associated with the disease-related cellular 
processes. This subset can be considered as potential 
determinants of the disease-perturbed cellular network. 
Finally, the hub-like DEP in each major network cluster is 
selected as a biomarker candidate that can reflect the 
perturbation of the disease-related cellular process 
associated with the network cluster. Mitra et al. [57] 

demonstrated the power of the network-based biomarker 
discovery approach in prediction of metastatic cancers in 
human breast cancer. They identified network clusters with 
dysregulated expression using SigArSearch and showed that 
the network clusters were more accurate in distinguishing 
metastatic cancers from non-metastatic cancers, compared 
with individual cancer-gene markers.
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Integrative analysis of proteomic data with other 
global data

Other global data than proteomic data, such as mRNA 
expression, mutation, DNA methylation, histone modification, 
can provide complementary information that enables to 
select reliable biomarker candidates when they are 
integrated with the proteomic data. The integrative analysis 
of proteomic data with other types of global datasets can be 
categorized into two groups (Fig. 3): (1) the molecular level 
and (2) the network-level integration methods [58]. The 
proteome data are contaminated with the noises coming 
from numerous sources of technical variability during 
LC-MS/MS experiments and biological variability in patient 
samples during sample collection and preparation [59, 60]. 
The integration of disparate global datasets reduces the 
artifacts of the noises in selection of the DEPs by enabling us 
to focus on the reliable DEPs showing consistent changes 
between control and patient samples in multiple types of 
global data [58].

In the molecular level integration method, the DEPs that 
show consistent alterations in the other global datasets (e.g., 
mRNA expression data) are searched, assuming that they 
are more reliable indicators of the perturbation of cellular 
processes under disease conditions (Fig. 3). Biomarker 
candidates can be then selected from these reliable DEPs. For 
example, the DEPs selected from the tissue data can be 
supported by the consistency in the altered expression of 
their corresponding mRNAs. Also, the DEPs can be further 
supported by the consistency in the changes of copy number 
variations or DNA and/or histone methylations of the 
corresponding genes. Moreover, the reliability of the DEPs 
selected from the serum proteome data can be supported by 
the altered expression of their corresponding mRNAs or 
proteins in the tissues from the target organ. Hyung et al. 
[61] demonstrated the value of the integrative analysis of 
serum proteome data with mRNA expression and proteome 
data obtained from the tissues in human breast cancers. 
They selected the DEPs between the serum samples 
collected from sensitive and resistant patients to a combi-
natorial chemotherapy using doxorubicin and docetaxol and 
then further selected the DEPs with altered expression of the 
corresponding mRNAs and proteins in the breast tissue 
samples. During the validation of biomarker candidates, 
they showed that the DEPs with the consistent alteration in 
the tissues showed higher accuracy in their validation using 
western blotting for a validation cohort of independent 
serum samples.

Individual patients can show the variation in altered 
molecules of a cellular pathway though the same pathway is 
consistently perturbed under disease conditions. Given the 

variation, these molecules cannot be selected as DEPs using 
the conventional statistical methods, thereby leading to the 
failure to identify biomarkers that reflect the alteration of 
such cellular pathways. Thus, it has been addressed that 
cellular pathways can serve as a more reliable indicator of the 
altered cellular processes under disease conditions, com-
pared to individual molecules [58]. Different types of 
molecules (mRNA/proteins, microRNAs, DNA methylations, 
and metabolites) can represent distinct layers of cellular 
networks. Thus, a cellular network can be modeled in a 
multi-layered network where each layer can be delineated by 
a distinct type of the molecules. For example, transcriptional 
and microRNA regulatory networks are defined by inter-
actions of transcription factors and microRNAs, respectively, 
with their target mRNAs. Also, cellular signaling networks 
are defined by protein-protein interactions (kinase- substrate 
interactions), while DNA methylation networks are defined 
by interactions of methyltransferases and demethylases with 
their target DNAs and mRNAs. The integration of multiple 
global datasets for different types of molecules enables us to 
decode the multi-layered cellular networks associated with 
the target disease. A number of the tools have been developed 
to understand the subnetworks (network clusters) of the 
multi-layered networks whose perturbations are collectively 
indicated by different types of global datasets, including IPA 
(QIAGEN Redwood City, http://www.qiagen.com/ingenuity), 
HotNet [62], or SteinerNet (Table 1) [63]. Although these 
tools can be applied for integration of proteomic data with 
other types of global data, they have been used mainly for 
integration of disparate genomic and transcriptomic data. 
Recently, Shi et al. [64] developed NetGestalt that can be 
used for integration of multi-dimensional global datasets 
including proteomic data. For example, using NegGestalt, 
Zhu et al. [65] identified KRAS and AKAP12 subnetworks 
that can play important roles in pathogenesis of colorectal 
cancers by integrating proteomic data with mutation, copy 
number variation, DNA methylation, and mRNA expression 
data generated from colon tissues and cells. Finally, the 
hub-like molecules in the subnetworks are selected as key 
indicators of the alterations of the disease-related processes 
associated with the subnetworks. For example, Iliopoulos et 
al. [66] identified a set of the biomarker candidates by 
performing the network- based integration of the proteome 
and microRNA expression data. Also, The Cancer Genome 
Atlas (TCGA) research network identified the notch 
signaling pathway as a key molecule representing the 
pathogenesis of ovarian cancers by integrating somatic 
mutation, copy number variation, and mRNA expression 
data using HotNet analysis [67].
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Discussion

In this review, we summarized a battery of bioinformatics 
analyses for network-based biomarker discovery using 
LC-MS/MS data. These analyses include peptide/protein 
identification using database search engines, peptide/ 
protein quantification from MS or MS/MS data, identifi-
cation of DEPs using statistical methods, functional 
enrichment analysis of DEPs using diverse enrichment tools, 
and network modeling and analysis of DEPs, as well as 
integrative analysis of disparate global datasets with the 
LC-MS/MS data. 

Peptide identification using database search has been 
known as a main challenge. Of the MS/MS spectra 
measured, about half of them are commonly mapped to 
peptide sequences. The inclusion of PTMs in database search 
can map the unidentified MS/MS spectra to peptide 
sequences. However, the PTM inclusion exponentially 
increases the search time and thus it would be practically 
impossible to include the most common five PTMs, phos-
phorylation, glycosylation, ubiquitination, methylation, and 
acetylation in database search. Recently, although several 
search tools, such as MODa [68], with improved search 
speeds have been developed, there is still significant needs 
for efficient search tools that can include the five common 
PTMs in the search. 

Moreover, protein quantification has been also one of the 
challenges in MS-based proteomic analysis. Relative protein 
abundances are estimated by combining the ratios of 
abundances of the peptides derived from the protein. The 
same peptide sequences can be derived from multiple 
proteins due to the redundancy in their sequences, which 
can cause the discrepancy in the ratios of the peptides from 
the same protein between control and patient samples. Also, 
technical and biological variability can add the discrepancy to 
the peptide ratios. Because of these sources of the 
discrepancy in the peptide ratios, it has been difficult to 
estimate the relative ratios of protein abundances between 
control and patient samples. Recently, although the 
optimization-based quantification tools, such as linear 
programming [33], have been developed, there have been 
significant needs for the quantification methods with 
improved accuracy.

Due to the issue with protein quantification, identifi-
cation of DEPs can be also erroneous when inaccurate ratios 
of protein abundances exist. Additional criteria, such as the 
number of patients showing fold-changes larger than a cutoff 
(e.g., 1.5-fold), are used to reduce the error (false-positives) 
in identification of DEPs. The error in identification of DEPs 
can further propagate into functional enrichment analysis 
and network modeling and analysis for the DEPs. Finally, the 

integrative analysis of disparate global datasets suffers from 
different scales of fold-changes and the size of detected 
molecules in the different types of global datasets. For 
example, mRNA fold-changes between control and patient 
samples can be relatively larger than the fold-changes of 
protein abundances, which may cause the bias toward 
mRNA fold-changes during the integration of fold-changes 
of mRNA and protein abundances. Also, differentially 
expressed microRNAs between control and patient samples 
are smaller than the DEPs or mRNAs, which can lead to the 
bias toward the DEPs or mRNAs during the integration. 
Various integration strategies have been proposed to reduce 
the intrinsic bias from the differences in the size of disparate 
global datasets. For example, in these methods, mRNA and 
protein abundance ratios are first integrated and the data 
with small sizes are separately integrated to the outputs 
from the initial integration of mRNA and protein data. 
However, regarding the scale difference in fold-changes, 
there have been the needs for the algorithms that can 
effectively normalize the different scales of fold-changes in 
different datasets.
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