
G&I   Genomics & Informatics

eISSN 2234-0742
Genomics Inform 2016;14(4):173-180

https://doi.org/10.5808/GI.2016.14.4.173

ORIGINAL ARTICLE

Received October 18, 2016; Revised December 3, 2016; Accepted December 3, 2016

*Corresponding author: Tel: +82-2-3010-4176, Fax: +82-2-3010-4182, E-mail: buhm.han@amc.seoul.kr

Copyright © 2016 by the Korea Genome Organization
CC  It is identical to the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/).

Comparison of Two Meta-Analysis Methods: 
Inverse-Variance-Weighted Average and 

Weighted Sum of Z-Scores

Cue Hyunkyu Lee1,2, Seungho Cook1,3, Ji Sung Lee1,4, Buhm Han1,2*

1Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea, 
2Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea, 

3School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea, 
4Department of Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea

The meta-analysis has become a widely used tool for many applications in bioinformatics, including genome-wide 
association studies. A commonly used approach for meta-analysis is the fixed effects model approach, for which there are 
two popular methods: the inverse variance-weighted average method and weighted sum of z-scores method. Although 
previous studies have shown that the two methods perform similarly, their characteristics and their relationship have not 
been thoroughly investigated. In this paper, we investigate the optimal characteristics of the two methods and show the 
connection between the two methods. We demonstrate that the each method is optimized for a unique goal, which gives us 
insight into the optimal weights for the weighted sum of z-scores method. We examine the connection between the two 
methods both analytically and empirically and show that their resulting statistics become equivalent under certain 
assumptions. Finally, we apply both methods to the Wellcome Trust Case Control Consortium data and demonstrate that the 
two methods can give distinct results in certain study designs.
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Introduction

The meta-analysis is a tool for pooling information from 
multiple independent studies [1-4]. In the field of genetics, 
the meta-analysis has become a popular way of aggregating 
information from multiple genome-wide association studies 
(GWASs) in order to increase statistical power while con-
trolling for the rate of false positive findings [5-13]. The meta- 
analysis has also become a useful tool for many applications 
of bioinformatics, such as neuroimage processing [14] and 
expression quantitative trait loci analysis [15]. 

There exist several approaches for combining information 
from multiple studies. Statistical methods can differ depen-
ding on the scenario: when (1) test statistics are unknown 
but only p-values are available, (2) test statistics are known 
but data are not available, or (3) actual data are available. In 

this paper, we focus on scenario (2), which is a common 
situation in genetic studies. We note that for scenario (1), 
Fisher’s method for combining p-values is commonly used 
[16]. In scenario (3), we can combine actual data, which is 
rarely doable in retrospective studies or in genetic studies 
where transferring genotype data is difficult due to privacy 
issues. For scenario (2), which we focus on, the fixed effects 
model meta-analysis is the most common approach for 
synthesizing test statistics from multiple studies [1, 17].

To perform a fixed effects model meta-analysis, there are 
two popular methods: the inverse variance-weighted average 
and the weighted sum of z-scores (SZ) [2, 17, 18]. The 
inverse variance-weighted average method (IVW) sum-
marizes effect sizes from multiple independent studies by 
calculating the weighted mean of the effect sizes using the 
inverse variance of the individual studies as weights. The 
weighted SZ method constructs a new z-score by calculating 
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a weighted sum of individual z-scores. It has been known 
that the sample size of individual studies is a preferable 
weight for the method [10, 19, 20]. Although several 
empirical evidence has shown that the two methods perform 
similarly [2, 17, 21], the characteristics of each method and 
the analytical connection between the two methods have not 
been thoroughly investigated. 

In this paper, we first investigate the optimal charac-
teristics of the two methods. We show that the two methods 
are optimized for different optimality criteria: IVW maximizes 
the likelihood function, which is equivalent to minimizing 
the estimator variance, and SZ maximizes the non-centrality 
parameter of the statistic, which is equivalent to maximizing 
the statistical power. This characterization gives us insight 
into the optimal weight for SZ; using only the sample size 
information as weights can often be suboptimal in terms of 
statistical power compared with using all information as 
weights, such as minor allele frequencies. Although the two 
methods are optimized for different goals, we analytically 
demonstrate that the two methods become equivalent under 
certain assumptions that hold over a wide range of applica-
tions. We examine this connection between the two 
methods both analytically and empirically. Finally, using real 
data analysis utilizing the Wellcome Trust Case Control 
Consortium data, we demonstrate that the two methods can 
give distinct results in certain study designs.

Methods
Inverse variance-weighted average method 

We first describe the two methods for the fixed effects 
model meta-analysis: the IVW and weighted SZ. The fixed 
effects model assumes that all studies in a meta-analysis share 
a single true effect size [2, 18, 22, 23]. The underlying mathe-
matical model of the observed effect Xi can be shown as: 

   , (1)

where μ is the true effect size and ei (the deviation of Xi from 
μ) is the error in the observation and i = 1,2,…,C. In order 
to integrate multiple observed effect sizes X1,…,XC from 
multiple studies, the weighted mean approach has been 
suggested [22], 

 
 . (2)

A choice of weight Wi is not immediately evident, but 
several attempts were made to identify the optimal weight of 
the methods based on empirical evidence [17, 20, 24]. 
Ideally, one needs to put more weight on the studies with 

more precision against studies with lower precision [3, 25, 
26]. When the sample size of each study is sufficiently large, 
we can assume that Xi follows a normal distribution 
approximately, based on the central limit theorem. This 
applies to situations where the data themselves are not 
normal (e.g., binary), in which situation the test statistic still 
follows a normal distribution, as long as the sample size is 
large. In GWASs, this assumption holds easily, because the 
sample size is typically as large as thousands of samples. 
Note that all derivations in this paper are based on this 
normality assumption. Let SE(Xi) be the estimated standard 
error of Xi, and Vi = SE(Xi)2. It is common practice to consider 
the estimated variance Vi as the true variance. The inverse 
variance-weighted average effect size estimator is the 
weighted mean of Xi with the weights [22]:

Wi = Vi
−1. (3)

Given these weights, the standard error of the average 

effect size   becomes SE( ) =   . The statistical 
significance can be tested by constructing a z-score statistic 
of IVW as follows, which asymptotically follows N(0,1) 
under the null hypothesis of no effects. 

 



 (4)

The p-value of the two-tailed significance test is 

   , (5)

where Φ is the standard normal cumulative distribution 
function.

Weighted SZ

Another popular method for the fixed effects model 
meta-analysis is calculating the weighted SZ from the 
follows studies. Let Zi be the z-score from study i, 
whichN(0,1) under the null hypothesis of no effects. Then, 
the weighted SZ statistic is

  
 . (6)

By the characteristic of a normal distribution, ZSZ also 
follows N(0,1) under the null hypothesis. To combine 
z-scores from multiple studies, a per-study sample size was 
suggested as weights of each study, as follows [2, 10]:

    , (7)
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where Ni is sample size of the study.

Results 

Below, we show the characteristics of the two methods 
and the connections between the two methods. We first 
show that each method is optimized to meet a unique 
optimality criterion. Then, we show that the two methods 
are connected, by using both analytical derivations and 
empirical simulations. Finally, we demonstrate a situation in 
which the two methods can give different results using real 
data.

Optimality of IVW

IVW maximizes likelihood function
We will define that a method is optimal if the method 

achieves a specific goal more effectively than any other 
method. We show that IVW is optimal in two different 
aspects: (1) the summary estimator gives the greatest 
likelihood than any other estimator and (2) the summary 
estimator’s variance is smaller than the variance of any other 
estimator. First, we show that IVW is optimal in the sense 
that the IVW estimator maximizes the likelihood function. 
Suppose that we have a series of n studies with observed 
effect sizes Xi, i = 1, 2, …, n. Under the fixed effects assump-
tion, there exists a true effect size μ, and each observation Xi 
comes from a normal distribution with mean μ and a 
standard deviation σi. The probability density function of 
each observation is given by

 


  








   


. (8)

Because −lnℒ(μ,σi
2|X1,⋯,Xn) will be minimized at 



ℒ
 ⋯ 

 , we can obtain the maximum like-

lihood (ML) estimator:

 
 

  
 

 
  

 , (9)

which is equivalent to the IVW statistic   in equation (2). 
Therefore, the inverse variance-weighted average method is 
optimal in the sense that it maximizes the likelihood of ob-
servations with the optimized weight of Wi = (σi

2)−1 [21, 22]. 

IVW achieves minimum variance
IVW is optimal in the sense that the IVW estimator 

achieves minimum variance. In short, IVW achieves mini-
mum variance by the properties of maximum likelihood 

estimator (MLE). MLE has the following property, as shown 
by Greene [27]: if the sampling is from an exponential family 
of distributions and the minimum variance unbiased 
estimator (MVUE) exists, that estimator becomes the ML 
estimator [27]. Thus, by this property and under these 
conditions, we can conclude that IVW achieves minimum 
variance, because IVW is the MLE and MVUE [27]. 

Optimality of SZ

SZ maximizes the non-centrality parameter
SZ combines z-scores from multiple studies to construct a 

new z-score. Therefore, in SZ, we are not interested in the 
estimator of Xi. Rather, we are interested in the statistical 
significance of the combined information. Thus, the goal of 
SZ is to maximize how much the z-score will be shifted from 
0 on average, which is often called the non-centrality 
parameter. By maximizing the non-centrality parameter, we 
can maximize the statistical power of the test. Among all 
possible weights that can construct a weighted SZ, we want 
to find the weights that will maximize the non-centrality 
parameter. 

The optimal weights of the weighted SZ can be found by the 
Cauchy-Schwarz inequality. We will make an assumption that 

   . (10)

That is, we assume that our z-score is defined as the effect 
size estimate divided by the standard error, which is the 
common definition of a z-score. In some applications, there 
can be different ways to define a z-score statistic, and for 
those definitions, the connection between z-score and effect 
size may not be apparent. However, in practice, this 
assumption holds approximately over a wide range of 
applications. Below, we will show that in the situation of a 2 
× 2 table, even if we obtain a z-score in a different way, it 
approximates a z-score that is obtained by using effect size 
and its standard error.

Under the fixed effect model assumption that assumes 
E[Xi] = μ, the z-score, Zi, follows a normal distribution ZSZ∼ 
N(λ,1), where λ is a non-centrality parameter with λ = 

 
   


 
 . Now, we want to obtain 

the weight wi that maximizes lambda. The optimal weight 
can be obtained by using the Cauchy-Schwarz inequality, as 
follows [12, 21]:

  
 



 
 



 
∙



   ≤ 






 



 
  



 
 





 





  . (11)
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The equality is achieved when 


 




 ∙


, (12)

where the terms 
 

  and k are constants. Thus, 
the optimal weight is wSZ,i = 1/ ). Then, the resulting 
weighted SZ can be constructed as

 
 

 

 
 

 
. (13)

This result provides us with the intuition that SZ is 
optimal only when we weight z-scores by the inverse of the 
standard errors of effect sizes. That is why previous studies 
have weighted z-scores by  , because in many applica-
tions, the variance Vi is inversely proportional to the sample 
size Ni. However, we would like to note that in some 
applications, the variance can be a function of not only Ni but 
also other properties of the data. For example, in genetic 
association studies, when we test an association of a 
single-nucleotide polymorphism (SNP) to a phenotype, the 
variance is typically inversely proportional to Nipi(1−pi), 
where pi denotes the allele frequency of the risk allele. This 
suggests that if the datasets that we want to combine have 
different allele frequencies, weighting the z-scores only by Ni 
can be suboptimal. Below, we will show by simulations that 
we can have some power loss by using just Ni as the weight, 
instead of accounting for frequency differences. However, 
the approximation of this weight   will be optimal when 
no heterogeneity can be found between the minor allele 
frequencies [2]. 

Equality of IVW and SZ under certain assumptions

Analytical derivation
Here, we show that the two methods IVW and SZ are 

equivalent under certain assumptions. We have shown that 
IVW is optimal in the sense that the estimator is MLE and 
achieves minimum variance, and SZ is optimal in the sense 
that it maximizes the non-centrality parameter. Although 
both methods can be considered optimal, their goals and 
how they are optimized are completely different; IVW aims 
to obtain the best summary estimate (thus MLE and 
minimum variance), and SZ aims to maximize the statistical 
power, without considering the summary estimator. Despite 
the fact that the two methods are optimized differently with 
different goals, we show that the resulting statistics are 
equivalent, in the sense that their z-scores (and therefore 
their p-values) are equivalent. Again, we assume the defini-

tion of z-score  

 , which is assumed in Eq. (18). We 

assume that SZ uses SE(Xi)−1 as weights for z-scores, rather 
than only using sample sizes.

Then, we can show, by simple algebra: 

 
 


 




  , (14)

which demonstrates that the two methods are exactly 
equivalent if we use SE(Xi)−1 as weights for SZ.

Empirical simulation
To empirically investigate the equality of IVW and SZ, we 

compared the power of the two methods. We assumed the 
following null and alternative hypotheses:

H0:μ = 0
H1:μ ≠ 0

That is, we tested if the mean effect is non-zero. 
To generate simulation sets of meta-analysis studies, we 

used the common simulation framework for simulating 
genetic association studies. We assumed that there is a 
single SNP whose minor allele confers risk of a disease, 
which is a dichotomous trait. We assumed a number of 

different relative risks, γ=  
   , ranging from 

1.01 to 1.2. We assumed a meta-analysis of 5 genetic associa-
tion studies and assumed a minor allele frequency (MAF) of 
0.3. In an additional simulation setting, we assumed varying 
MAFs of (0.1,0.2,0.3,0.4,0.5) for the 5 studies. We assumed 
a very small disease prevalence (F ≈ 0). Given these 
assumptions and parameters, we can calculate the expected 
MAF in cases and in controls. Specifically, given MAF p and 
relative risk γ, the case MAF becomes γp/((γ−1)p ＋ 1), 
where the control MAF becomes approximately p, given F ≈ 
0. Given the expected MAF in cases and controls, we could 
randomly sample genotype data, assuming 500 cases and 
500 controls for each of the five studies. To assess the 
statistical significance of the sample data, we used log odds 
ratio as a statistic, which follows an asymptotic normal 
distribution. We repeated the procedure to generate 100,000 
simulated meta-analysis sets. Given the significance level α 

= 0.05, the power was the proportion of sample sets whose 
meta-analysis p-value was ≤α.

We compared the two methods—IVW and weighted SZ—
using the inverse standard error as a weight factor (SZ_SE). 
Fig. 1 shows that the two methods showed the same power 
in both situations: under no heterogeneity in MAF between 
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Fig. 1. Power test of IVW, SZ_SE, and SZ_N. Total 100,000 
simulated meta-analysis data sets of five studies were generated, 
each with 500 case and 500 control. (A) We assumed the same 
MAFs of 0.3 for five studies. (B) We assumed varying MAFs of 0.1,
0.2, 0.3, 0.4, and 0.5 for five studies. IVW, inverse 
variance-weighted average method; SZ_SE, weighted SZ whose 
weights are given as inverse standard error; SZ_N, SZ whose 
weights are given as the square root of sample size; MAF, minor 
allele frequency.

studies (Fig. 1A) and under heterogeneity in MAF (Fig. 1B). 
This result complements our analytical results that the two 
methods are equivalent if SZ uses SE(Xi)−1 as weights. 

Additionally, we compared the two methods with another 
method, the weighted SZ, which uses the inverse squared 
root sample size as the weight (SZ_N). SZ_N was equivalent 
to IVW and SZ_SE in terms of power, when there was no 
heterogeneity in MAF (Fig. 1A). However, with the existence 
of differences in allele frequencies (therefore, differences in 

weights, wIVW,i ≠ wSZ_N,i), SZ_N showed a slight power loss 
from the other two methods (Fig. 1B). This result demon-
strates that using only sample size as the weight can be 
suboptimal if there are other factors that can cause variance 
differences between studies, such as allele frequencies. 
Nevertheless, the power drop of using only sample size as 
the weight was quite small (i.e., at γ = 1.15, the power of 
IVW and SZ_SE was 58.24%, but the power of SZ_N was 
57.23%, with only 1.01% power loss.)

Situations in which IVW and SZ can give distinct 
results

In this section, we demonstrate a situation in which IVW 
and SZ can give distinct results. As we have shown above, SZ 
whose weights are given as SE(Xi)−1(SZ_SE) is analytically 
equivalent to IVW. However, SZ whose weights are given as 
the square root of sample size (SZ_N) can give slightly 
different results, if the expected relationship SE(Xi)−1 

∝  
is broken. We have already shown that a MAF difference can 
result in such breakage of this relationship. Here, additio-
nally, we show that the use of a linear mixed model can also 
result in such breakage of the relationship SE(Xi)−1∝ . 
We used the data of the Wellcome Trust Case Control 
Consortium [28]. This dataset includes approximately 2,000 
cases for each of seven different diseases and 1,500 controls 
for each of two control groups (1958C and National Bureau 
of Standards [NBS]). We used the data on rheumatoid arthritis 
(RA) and type 1 diabetes (T1D). After standard quality- 
control and removal of the MHC region, we obtained 469,225 
SNPs. We performed association tests for two diseases; we 
performed association tests for RA using NBS as controls 
and association tests for T1D using 1958C as controls. The 
sample sizes for the two association tests were similar (N = 
3,318 and 3,443, respectively). We used logistic regression 
implemented in plink (with--logistic command). Because 
the sample sizes of the two tests were similar, we expected 
that for each SNP, the standard errors of the effect size 
estimate would be similar. That is, we wanted to test if the 
relationship SE(Xi)−1

∝  held well for these real data. Fig. 
2A shows that when we plotted the log10 value of the ratio 
of the two standard errors, the values were highly concen-
trated around 0. This implies that the standard errors were 
very similar between RA and T1D, as expected, because the 
sample sizes were similar. Thus, the relationship SE(Xi)−1∝

  approximately held well. Therefore, Fig. 2A shows that 
IVW and SZ_N have similar results in this situation.

Next, we changed the study design and used the linear 
mixed model implemented in the software package 
Genome-wide Efficient Mixed Model Association (GEMMA). 
We used GEMMA for both T1D and RA. Fig. 2B shows that 
the standard errors of these two analyses were similar. Then, 
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Fig. 2. Ratio of standard errors of RA
and T1D association analyses. Left 
panel shows log10 values of the ratio
of the two standard errors from the 
two studies participating in a 
meta-analysis (RA and T1D). Right 
panel shows the −log10 values of 
p-values of two different meta-analysis
methods (IVW and SZ_N) for com-
bining the two studies (RA and T1D). 
(A) Both RA and T1D analyses used 
logistic regression. (B) Both RA and 
T1D analyses used linear mixed 
model using GEMMA. (C) RA analysis
used linear mixed model and T1D 
analysis used logistic regression. RA, 
rheumatoid arthritis; T1D, type 1 dia-
betes; IVW, inverse variance-weighted
average method; SZ_N, SZ whose 
weights are given as the square root 
of sample size.

we used GEMMA for T1D but not for RA. When we plotted 
the log10 value of the ratio of the resulting standard errors, 
the values deviated dramatically from 0 (Fig. 2C). The 
standard errors were much smaller in the linear mixed model 
than in the logistic regression. This is expected, because the 
effect sizes of the linear mixed model and logistic model have 
different meanings and are not comparable. Therefore, the 
relationship SE(Xi)−1∝  does not hold. As a result, in the 
meta-analysis, the p-values of IVW and SZ_N differed 
dramatically. Note that the standard errors given by GEMMA 
can be slightly different from the standard linear model, 
because GEMMA regresses the effect of population structure. 
However, an additional analysis comparing the standard 
errors of GEMMA and the standard linear model demons-

trated that this effect is minimal and that their standard 
errors were similar (Fig. 3). Thus, the difference observed 
between GEMMA and the logistic regression model was 
mainly due to the use of different models (linear and logistic).

One may argue that a meta-analysis design that combines 
the results of a logistic regression model and linear model is 
uncommon. Indeed, for binary traits, the use of a logistic 
regression model is more suitable. However, for dealing with 
population structure and cryptic relatedness, a linear mixed 
model is currently the main tool. For GWASs, there is no 
widely used efficient package implementing a logistic mixed 
model. For this reason, many studies are using a linear mixed 
model for binary traits as approximations. Therefore, if we 
assume a situation that the effect size in one study is 
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Fig. 3. Ratio of standard errors of RA and T1D association analyses,
when RA analysis used the standard linear regression and T1D 
analysis used linear mixed model. RA, rheumatoid arthritis; T1D, 
type 1 diabetes; SE, standard error.

obtained from a logistic regression model and the effect size 
in another study is obtained from a linear mixed model, the 
results of IVW and SZ_N can be different. 

Discussion

In this paper, we investigated the optimal characteristics 
of two fixed effects meta-analysis methods: the inverse 
variance-weighted average and the weighted SZ. We showed 
that the two methods are optimized with different goals, but 
they are equivalent under certain assumptions. By analytical 
derivations and empirical simulations, we demonstrated 
their equivalency and provided insights into the optimal 
weights for the weighted SZ. 

We have also shown that the optimal weights for the 
weighted SZ can be a function of not only the sample size but 
also other properties—for example, allele frequencies in 
GWASs. We empirically showed that if allele frequencies 
differ between studies, using only sample size for the weight 
can be suboptimal in terms of power. Therefore, we suggest 
that one should use effect size and standard error to define a 
z-score and use the inverse of the standard error as the 
weight for the weighted SZ. The standard error term in-
cludes all information, such as sample size and allele fre-
quencies, thus providing optimal performance. Nevertheless, 
in our simulations, using just sample size resulted in only 
slightly lower power (at most, 1.07% power loss). Thus, in 
most applications, using only sample size for weights might 
perform reasonably well. 

We also demonstrated that in some situations, the two 
meta-analysis methods can give different results. Speci-
fically, when one study used the linear mixed model to 
account for population structure, the effect size from the 

linear mixed model can be incompatible with the effect size 
from the logistic regression model. In such situations, the 
use of meta-analysis methods based on z-scores or p-values 
is recommended, because it is not sensible to apply inverse 
variance-weighted average to multiple incompatible effect 
sizes from different statistical models.
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