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DNA microarray and next-generation sequencing provide data that can be used for the genetic analysis of multiple 
quantitative traits such as gene expression levels, transcription factor binding profiles, and epigenetic signatures. In 
particular, chromatin opening is tightly coupled with gene transcription. To understand how these two processes are 
genetically regulated and associated with each other, we examined the changes of chromatin accessibility and gene 
expression in response to genetic variation by means of quantitative trait loci mapping. Regulatory patterns commonly 
observed in yeast and human across different technical platforms and experimental designs suggest a higher genetic 
complexity of transcription regulation in contrast to a more robust genetic architecture of chromatin regulation. 
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Introduction

Quantitative trait loci (QTL) mapping has been widely 
used to discover underlying genetic factors that can explain 
particular phenotypes of interest. Thanks to DNA microarray 
technology, the expression phenotype of thousands of genes 
was associated with the genotypes across the whole genome 
in expression QTL mapping [1-7]. Recent advent of next-ge-
neration sequencing technology has enabled a genetic 
profiling of chromatin traits as well as more in-depth 
analyses of gene expression variation. Especially, the me-
chanisms controlling chromatin accessibility have been of 
particular interest because of their importance in a wide 
spectrum of DNA regulation processes. For example, Degner 
et al. [8] utilized DNaseI hypersensitivity assay coupled with 
high-throughput sequencing (DNase-seq) to map geno-
me-wide chromatin accessibility to the genotypes across 70 
human individuals, for which a previous RNA-sequencing 
(RNA-seq)-based expression QTL study revealed new 
insights into the genetic regulation of transcription [5]. In 
yeast, expression QTL mapping has been performed for the 
genetic dissection of transcription regulation in a cross 
between two parental strains of Saccharomyces cerevisiae 

(BY4716 and RM11-1a) based on DNA microarrays [1, 2, 
9-11]. In order to generate a matched dataset of chromatin 
accessibility for this set of yeast individuals, we carried out 
Formaldehyde-Assisted Isolation of Regulatory Elements 
followed by sequencing (FAIRE-seq) for a total of 96 
segregants from the cross of BY4716 and RM11-1a [12]. 

In this study, we sought to dissect the genetic architecture 
of the regulation of gene expression and chromatin acces-
sibility by analysing previous data generated in yeast and 
human based on different technical platforms and experi-
mental designs. Our main goal was to find differences in the 
overall regulatory structure between open chromatin and 
gene expression. We were also interested to determine 
whether the two distant species, namely yeast and human, 
would be different in genetic regulatory architecture and to 
estimate the effect of the technical or experimental 
differences in genotyping and measuring the quantitative 
traits. 

Methods
Processing of human genotype data

Genotype data from the HapMap project [13] and 1000 
Genomes Project [14] for 70 Yoruba (YRI) lymphoblastoid 
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Fig. 1. Data analysis scheme. Relationships between the genetic 
regulatory loci and the quantitative traits (chromatin accessibility 
or gene expression) were explored in yeast and human. Data from
different experimental settings and technical platforms were 
integrated into a unified analytical framework. RNA-seq, RNA-se-
quencing; FAIRE-seq, Formaldehyde-Assisted Isolation of Regulatory
Elements followed by sequencing; DNase-seq, DNaseI hyper-
sensitivity assay coupled with high-throughput sequencing; QTL, 
quantitative trait loci.

cell lines were used for DNase-seq analysis [8]. The 
genotype of each single nucleotide polymorphism (SNP) 
locus was estimated based on the Bayesian framework by 
means of the BIMBAM tool [15] and the genotype estimates 
were made available at http://eqtl.uchicago.edu/dsQTL_ 
data/GENOTYPES/. We first selected 2,157,286 genetic 
markers (SNPs) with the minor allele frequency greater than 
30%. To reduce complexity and ease interpretation, we 
focused on the genetic variants that can change the function 
of the protein (non-synonymous SNPs) or the abundance of 
the protein (SNPs associated with the expression level of a 
nearby gene). The SIFT tool [16] was used to identify 
non-synonymous SNPs. We performed expression QTL 
mapping as described below and identified SNPs that were 
associated (p ＜ 10–5) in cis (within 200 kb from the nearest 
gene). Taken together, 7,211 SNPs were identified for QTL 
mapping. 

Processing of human gene expression data

RNA-seq data for 69 YRI lymphoblastoid cell lines [5] 
were downloaded from http://eqtl.uchicago.edu/RNA_ 
Seq_data/results. A total of 18,147 genes were used after 
normalization to zero mean and unit variance. 

Processing of human chromatin accessibility data

DNase-seq data for 70 YRI lymphoblastoid cell lines [8] 
were downloaded from http://eqtl.uchicago.edu/dsQTL_ 
data/MAPPED_READS/. Sequence reads from multiple 
replicates for each sample were combined and F-Seq [17] 
was run to identify the peaks of the reads from each sample. 
Statistical significance of the peak was determined by fitting 
the data to a gamma distribution to obtain the p-value (script 
obtained from the F-Seq authors). p ＜ 10–3 was used to 
identify significant peaks from each sample. The overlapping 
peaks across the YRI individuals were merged into a single 
peak by using the mergeBED command of BEDTools [18], 
resulting in a total of 265,130 accessible chromatin regions. 
For each sample, the number of the DNase-seq reads 
mapped to each region was counted and the read count was 
normalized as previously suggested [19, 20] to obtain 
normalized chromatin accessibility, which was then further 
normalized to zero mean and unit variance across the YRI 
samples. Accessible regions falling on promoters or 
enhancers were identified based on chromatin annotation by 
Ernst et al. [21]. A total of 45,781 chromatin regions were 
found to reside in active promoters, weak promoters, poised 
promoters, strong enhancers, and weak enhancers 
annotated in the GM12878 lymphoblastoid cell line. 

Processing of yeast data

Genotype and gene expression microarray data [10] used 

in previous expression QTL studies [1, 2, 9] for ＞100 
segregants from a cross between two parental strains of yeast 
(BY4716 and RM11-1a) were obtained. As previously sug-
gested [22], adjacent genetic markers with less than three 
genotypic mismatches across the yeast strains were merged 
into the average genotype profile, resulting in 1,533 unique 
markers. We employed the microarray dataset of normalized 
expression levels of 5,352 genes as previously used [10]. 
FAIRE experiments were performed based on the published 
protocol [23]. The FAIRE-seq data for the 96 yeast strains 
from our previous work [12] is available at the Gene Ex-
pression Omnibus (GEO) database with accession number 
GSE33466. Briefly, we identified open chromatin regions in 
96 yeast segregants by means of F-Seq [17]. The overlapping 
peaks across the 96 strains were merged into a single peak by 
using BEDTools [18], resulting in a total of 7,527 accessible 
chromatin regions. For each sample, the number of the 
FAIRE-seq reads mapped to each region was counted and the 
read count was normalized as previously suggested [19, 20] 
to obtain normalized chromatin accessibility, which was 
then further normalized to zero mean and unit variance 
across the 96 segregants. 

Trans-QTL analysis

Sixty-three human samples were commonly present in the 
RNA-seq [5] and DNase-seq [8] data, and 96 yeast seg-
regants in the microarray and FAIRE-seq data. Therefore, we 
used the common samples for our QTL mapping. Linear 
regression was carried out leading to 2,100,341 chromatin 
associations and 975,333 expression associations in human, 
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Fig. 2. Manhattan plots displaying the
chromosomal distribution of regulatory
loci and (x axis) and the number of 
associations for each locus divided by
the total number of associations (i.e., 
percentage on the y axis) at a given 
p-value in human (p ＜ 0.01) and yeast
(p ＜ 0.05). QTL, quantitative trait loci.

Fig. 3. Manhattan plots displaying the
chromosomal distribution of target traits
(x axis) and the number of associations
for each trait divided by the total 
number of associations (i.e., percentage
on the y axis) at a given p-value in 
human (p ＜ 0.01) and yeast (p ＜ 0.05).
QTL, quantitative trait loci.

and 110,802 chromatin linkages and 164,217 expression 
linkages in yeast at p ＜ 0.01. Genetic markers farther than 
200 kb from the nearest gene in human and 100 kb in yeast 
were identified to examine regulatory relationships acting in 
trans. For each trait (gene or accessible chromatin region) 
and regulatory locus (genetic marker), the number of 
associations or linkages was obtained and divided by the 

total number of associations at a given p-value. 

Results and Discussion

For a systematic comparative analysis of chromatin re-
gulation and transcription regulation, we carried out QTL 
mapping in a unified analytical framework by applying the 
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Fig. 4. Box plots showing the per-
centage of associations for each re-
gulatory locus (upper) or quantitative 
trait (lower) from chromatin quantitative
trait loci (QTL) and expression QTL 
mapping on a log scale in human (left)
and yeast (right).

identical statistical methods and criteria for open chromatin 
and gene expression data in yeast and human (Methods and 
Fig. 1). From the human chromatin accessibility data [8], we 
selected chromatin sites at the promoter or enhancer (as 
defined by Ernst et al. [21]). Yeast and human QTL mapping 
was different in the genetics setting (linkage vs. association) 
and technical platforms (DNA microarray vs. RNA-seq and 
FAIRE-seq vs. DNase-seq) (Fig. 1). 

We selected significant trans-associations based on the 
p-value of linear regression and then examined the dis-
tribution of linkages between regulatory loci (genetic 
markers) and quantitative traits (gene expression levels or 
chromatin accessibility). First, there were particular 
regulatory loci that were associated with a large number of 
target chromatin traits but not with gene expression traits 
both in human and yeast (Fig. 2). Second, expression traits 
than chromatin traits were associated with a greater number 
of regulatory loci (Fig. 3). This trend was consistently found 
when varying p-values were used (Fig. 4). Intriguingly, the 

number of targets for chromatin regulatory loci is more 
dispersed resulting in outliers with extremely many targets 
while the average number is lower as compared to the 
pattern of expression regulatory loci (grey vs. white in the 
upper panel of Fig. 4). On the other hand, the number of 
associated regulatory loci was much greater for gene 
expression traits in terms of the outliers and average as well 
(grey vs. white in the lower panel of Fig. 4). 

These findings can be interpreted as follows. There are a 
few regulatory hotspots that are responsible for a large 
number of chromatin sites. Most regulatory loci, however, 
tend to influence fewer chromatin traits than gene 
expression traits. Different biological functions are expected 
between the promiscuous and specific chromatin regulators. 
On the other hand, gene expression seems to be more 
reactive to genetic variation when judged by the number of 
associated regulatory loci. This may imply that transcription 
processes receive more regulatory inputs than chromatin 
regulation, in which case chromatin accessibility may not be 
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a good predictor of precise gene expression levels. There was 
a remarkable consistency of the data for two evolutionarily 
distant species across different technical platforms and 
experimental settings, thereby supporting the biological 
implications of the findings while ruling out the possibility 
of technical artifacts. 

Based on these findings, we propose that chromatin 
regulation mechanisms have evolved a stable genetic ar-
chitecture while the transcription regulatory network 
maintains high genetic complexity and connectivity and is 
more susceptible to mutations. First, the lower number of 
associations per chromatin trait suggests that chromatin 
structure is more robust to genetic perturbation. On the 
contrary, gene expression traits have more associations, 
increasing the probability of targets being associated with 
mutations. Second, chromatin associations are biased to a 
handful of loci responsible for an extremely large number of 
chromatin sites. As long as these hotspot loci are protected 
from mutations, the perturbation of chromatin regulation 
architecture could be minimized. In contrast, the average 
number of associations is high for transcription regulatory 
loci, increasing the overall effect of single mutations. Given 
the higher probability of expression traits being associated 
with mutations and the greater influence of individual 
mutations on transcription, it is conceivable that phenotypic 
diversity is more likely to be created in response to genetic 
variation at the level of transcription processes downstream 
of chromatin regulation steps. 
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